Maria Nikodemova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11683950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Survey of the Health of Wisconsin (SHOW) Program: An Infrastructure for Advancing Population Health. Frontiers in Public Health, 2022, 10, 818777.	2.7	18
2	The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell Metabolism, 2021, 33, 905-922.e6.	16.2	183
3	Assessing the impact of storage time on the stability of stool microbiota richness, diversity, and composition. Gut Pathogens, 2021, 13, 75.	3.4	14
4	Comparison of cricket diet with peanut-based and milk-based diets in the recovery from protein malnutrition in mice and the impact on growth, metabolism and immune function. PLoS ONE, 2020, 15, e0234559.	2.5	13
5	Transcriptional differences between smokers and non-smokers and variance by obesity as a risk factor for human sensitivity to environmental exposures. Environment International, 2018, 113, 249-258.	10.0	8
6	Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age. Physiological Genomics, 2016, 48, 336-344.	2.3	26
7	Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week. Journal of Neuroimmunology, 2015, 278, 280-288.	2.3	140
8	CSF1 overexpression has pleiotropic effects on microglia <i>in vivo</i> . Glia, 2014, 62, 1955-1967.	4.9	59
9	Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats. Neurobiology of Disease, 2014, 69, 43-53.	4.4	59
10	Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. Journal of Neuroscience Research, 2013, 91, 1143-1151.	2.9	287
11	Association of Sleep Disordered Breathing and Cognitive Deficit in <i>APOE</i> ε4 Carriers. Sleep, 2013, 36, 873-880.	1.1	67
12	Efficient isolation of live microglia with preserved phenotypes from adult mouse brain. Journal of Neuroinflammation, 2012, 9, 147.	7.2	146
13	Minocycline attenuates experimental autoimmune encephalomyelitis in rats by reducing T cell infiltration into the spinal cord. Journal of Neuroimmunology, 2010, 219, 33-37.	2.3	34
14	Expression of P2 nucleotide receptors varies with age and sex in murine brain microglia. Journal of Neuroinflammation, 2009, 6, 24.	7.2	104
15	Minocycline Down-regulates MHC II Expression in Microglia and Macrophages through Inhibition of IRF-1 and Protein Kinase C (PKC)α/βII. Journal of Biological Chemistry, 2007, 282, 15208-15216.	3.4	136
16	Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and lκBα degradation in a stimulus-specific manner in microglia. Journal of Neurochemistry, 2006, 96, 314-323.	3.9	168
17	Purinergic receptor modulation of BV-2 microglial cell activity: Potential involvement of p38 MAP kinase and CREB. Journal of Neuroimmunology, 2005, 166, 113-125.	2.3	43
18	Colchicine Treatment Differently Affects Releasable Thyrotropin-Releasing Hormone (TRH) Pools in the Hypothalamic Paraventricular Nucleus (PVN) and the Median Eminence (ME). Cellular and Molecular Neurobiology, 2005, 25, 681-695.	3.3	14

Maria Nikodemova

#	Article	IF	CITATIONS
19	Minocycline attenuates nitric oxide-mediated neuronal and axonal destruction in vitro. Neuron Glia Biology, 2004, 1, 297-305.	1.6	30
20	Corticotropin releasing hormone receptors: two decades later. Peptides, 2004, 25, 319-329.	2.4	140
21	Translational Regulation of the Vasopressin V1b Receptor Involves an Internal Ribosome Entry Site. Molecular Endocrinology, 2003, 17, 1959-1971.	3.7	13
22	Cyclic Adenosine 3′,5′-Monophosphate Regulation of Corticotropin-Releasing Hormone Promoter Activity in AtT-20 Cells and in a Transformed Hypothalamic Cell Line. Endocrinology, 2003, 144, 1292-1300.	2.8	37
23	Regulation of pituitary corticotropin releasing hormone receptors. Peptides, 2001, 22, 769-774.	2.4	74
24	Inhibition of Corticotropin Releasing Hormone Type-1 Receptor Translation by an Upstream AUG Triplet in the 5′ Untranslated Region. Molecular Pharmacology, 2001, 59, 485-492.	2.3	48
25	Chronic Ethanol Drinking and Food Deprivation Affect Rat Hypothalamic-Pituitary-Thyroid Axis and TRH in Septum. Endocrine, 1998, 9, 213-218.	2.2	10
26	Different regulation of thyrotropin releasing hormone content and release in paraventricular nucleus (PVN) and median eminence (ME) of rat hypothalamus during in vitro incubation. Life Sciences, 1995, 56, 1511-1521.	4.3	8