Colin Dingwall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11683892/publications.pdf

Version: 2024-02-01

53 papers 10,870 citations

108046 37 h-index 198040 52 g-index

53 all docs 53 docs citations

53 times ranked

8839 citing authors

#	Article	IF	CITATIONS
1	Down-regulation of the ATP-binding Cassette Transporter 2 (Abca2) Reduces Amyloid- $\hat{\Gamma}^2$ Production by Altering Nicastrin Maturation and Intracellular Localization. Journal of Biological Chemistry, 2012, 287, 1100-1111.	1.6	39
2	BACE-1 hydroxyethylamine inhibitors using novel edge-to-face interaction with Arg-296. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4639-4644.	1.0	12
3	Neuriteâ€like structures induced by mevalonate pathway blockade are due to the stability of cell adhesion foci and are enhanced by the presence of APP. Journal of Neurochemistry, 2010, 114, 832-842.	2.1	5
4	Deficiency of the Copper Chaperone for Superoxide Dismutase Increases Amyloid- \hat{l}^2 Production. Journal of Alzheimer's Disease, 2010, 21, 1101-1105.	1.2	23
5	Second generation of BACE-1 inhibitors part 3: Towards non hydroxyethylamine transition state mimetics. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3674-3678.	1.0	53
6	Second generation of BACE-1 inhibitors part 2: Optimisation of the non-prime side substituent. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3669-3673.	1.0	45
7	Second generation of BACE-1 inhibitors. Part 1: The need for improved pharmacokinetics. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3664-3668.	1.0	46
8	BACE-1 inhibitors Part 1: Identification of novel hydroxy ethylamines (HEAs). Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1011-1016.	1.0	45
9	BACE-1 inhibitors part 2: Identification of hydroxy ethylamines (HEAs) with reduced peptidic character. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1017-1021.	1.0	55
10	BACE-1 inhibitors part 3: Identification of hydroxy ethylamines (HEAs) with nanomolar potency in cells. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1022-1026.	1.0	62
11	Second Generation of Hydroxyethylamine BACE-1 Inhibitors: Optimizing Potency and Oral Bioavailability. Journal of Medicinal Chemistry, 2008, 51, 3313-3317.	2.9	62
12	Oral administration of a potent and selective non-peptidic BACE-1 inhibitor decreases?-cleavage of amyloid precursor protein and amyloid-? production in vivo. Journal of Neurochemistry, 2007, 100, 802-809.	2.1	186
13	Elevated levels of amyloid precursor protein in muscle of patients with amyotrophic lateral sclerosis and a mouse model of the disease. Muscle and Nerve, 2006, 34, 444-450.	1.0	34
14	BACE1 Cytoplasmic Domain Interacts with the Copper Chaperone for Superoxide Dismutase-1 and Binds Copper*. Journal of Biological Chemistry, 2005, 280, 17930-17937.	1.6	111
15	Caspase-7 Gene Disruption Reveals an Involvement of the Enzyme during the Early Stages of Apoptosis. Journal of Biological Chemistry, 2004, 279, 1030-1039.	1.6	38
16	Neuronal membrane cholesterol loss enhances amyloid peptide generation. Journal of Cell Biology, 2004, 167, 953-960.	2.3	308
17	Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains. EMBO Reports, 2003, 4, 1190-1196.	2.0	125
18	Lipid rafts mediate the interaction between myelin-associated glycoprotein (MAG) on myelin and MAG-receptors on neurons. Molecular and Cellular Neurosciences, 2003, 22, 344-352.	1.0	82

#	Article	IF	Citations
19	BACE1 (\hat{l}^2 -secretase) transgenic and knockout mice: identification of neurochemical deficits and behavioral changes. Molecular and Cellular Neurosciences, 2003, 24, 646-655.	1.0	140
20	Exclusively targeting Â-secretase to lipid rafts by GPI-anchor addition up-regulates Â-site processing of the amyloid precursor protein. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11735-11740.	3 . 3	346
21	Characterization of the Ectodomain Shedding of the \hat{l}^2 -Site Amyloid Precursor Protein-cleaving Enzyme 1 (BACE1). Journal of Biological Chemistry, 2003, 278, 36264-36268.	1.6	49
22	Cyclin-Dependent Kinase-5/p35 Phosphorylates Presenilin 1 to Regulate Carboxy-Terminal Fragment Stability. Molecular and Cellular Neurosciences, 2002, 20, 13-20.	1.0	71
23	The Serine Protease Omi/HtrA2 Regulates Apoptosis by Binding XIAP through a Reaper-like Motif. Journal of Biological Chemistry, 2002, 277, 439-444.	1.6	470
24	Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO Journal, 2002, 21, 1967-1977.	3.5	233
25	The Crystal Structure of Nucleoplasmin-Core. Molecular Cell, 2001, 8, 841-853.	4.5	164
26	Compartmentalization of \hat{l}^2 -secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Current Biology, 2001, 11, 1288-1293.	1.8	300
27	Characterization of the Glycosylation Profiles of Alzheimer's Î ² -Secretase Protein Asp-2 Expressed in a Variety of Cell Lines. Journal of Biological Chemistry, 2001, 276, 16739-16748.	1.6	83
28	Prodomain Processing of Asp1 (BACE2) Is Autocatalytic. Journal of Biological Chemistry, 2001, 276, 23322-23328.	1.6	37
29	Spotlight on BACE: The secretases as targets for treatment in Alzheimer disease. Journal of Clinical Investigation, 2001, 108, 1243-1246.	3.9	31
30	Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. FEBS Journal, 2000, 267, 5699-5710.	0.2	227
31	A genetic system for detection of protein nuclear import and export. Nature Biotechnology, 2000, 18, 433-437.	9.4	107
32	Regulated Nuclear-Cytoplasmic Localization of Interferon Regulatory Factor 3, a Subunit of Double-Stranded RNA-Activated Factor 1. Molecular and Cellular Biology, 2000, 20, 4159-4168.	1.1	191
33	In search of an enzyme: the \hat{l}^2 -secretase of Alzheimer's disease is an aspartic proteinase. Trends in Neurosciences, 2000, 23, 565-570.	4.2	51
34	Identification of a Novel Aspartic Protease (Asp 2) as \hat{l}^2 -Secretase. Molecular and Cellular Neurosciences, 1999, 14, 419-427.	1.0	1,056
35	Nuclear import: A tale of two sites. Current Biology, 1998, 8, R922-R924.	1.8	59
36	Chapter 23 In Vitro Systems for the Reconstitution of snRNP and Protein Nuclear Import. Methods in Cell Biology, 1997, 53, 517-543.	0.5	10

#	Article	IF	CITATIONS
37	Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids. Current Biology, 1996, 6, 1025-1027.	1.8	228
38	Transportin nuclear proteins. Nature, 1996, 384, 210-211.	13.7	6
39	Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Current Biology, 1995, 5, 383-392.	1.8	472
40	Introduction: The nuclear envelope. Seminars in Cell Biology, 1992, 3, 221-223.	3 . 5	1
41	Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of bipartite nuclear targeting sequence. Cell, 1991, 64, 615-623.	13.5	1,489
42	Nuclear targeting sequences â€" a consensus?. Trends in Biochemical Sciences, 1991, 16, 478-481.	3.7	1,953
43	Functional dissection of a viral transactivator. BioEssays, 1991, 13, 85-86.	1.2	2
44	Transport across the nuclear envelope: Enigmas and explanations. BioEssays, 1991, 13, 213-218.	1.2	68
45	Trans-Activation Requires the Binding of the HIV-1 Tat Protein to Tar RNA. , 1991, , 133-143.		0
46	Plugging the nuclear pore. Nature, 1990, 346, 512-513.	13.7	20
47	HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-loop structure located within the Rev response element region. Cell, 1990, 60, 685-693.	13.5	406
48	Characterisation of the nuclear location sequence of Xenopus nucleoplasmin. Journal of Cell Science, 1989, 1989, 243-248.	1.2	15
49	Chromatin assemblyin vitro andin vivo. BioEssays, 1988, 9, 44-49.	1.2	53
50	Protein Import into the Cell Nucleus. Annual Review of Cell Biology, 1986, 2, 367-390.	26.0	564
51	The accumulation of proteins in the nucleus. Trends in Biochemical Sciences, 1985, 10, 64-66.	3.7	59
52	A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell, 1982, 30, 449-458.	13.5	558
53	Developmental inactivity of 5S RNA genes persists when chromosomes are cut between genes. Nature, 1982, 299, 652-653.	13.7	20