David M Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11682890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptional profiling reveals gene expression changes associated with inflammation and cell proliferation following shortâ€ŧerm inhalation exposure to copper oxide nanoparticles. Journal of Applied Toxicology, 2018, 38, 385-397.	2.8	44
2	Adoption of <i>in vitro</i> systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. Critical Reviews in Toxicology, 2018, 48, 252-271.	3.9	46
3	Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	7
4	Mechanism of neutrophil activation and toxicity elicited by engineered nanomaterials. Toxicology in Vitro, 2015, 29, 1172-1184.	2.4	19
5	Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal nonlinear optical microscopy. Nanotechnology, 2015, 26, 505102.	2.6	6
6	Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos. Toxicology in Vitro, 2015, 29, 1513-1528.	2.4	132
7	Serum enhanced cytokine responses of macrophages to silica and iron oxide particles and nanomaterials: a comparison of serum to lung lining fluid and albumin dispersions. Journal of Applied Toxicology, 2014, 34, 1177-1187.	2.8	7
8	The uptake and intracellular fate of a series of different surface coated quantum dots in vitro. Toxicology, 2011, 286, 58-68.	4.2	67
9	Quantum dot cytotoxicity <i>in vitro</i> : An investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials. Nanotoxicology, 2011, 5, 664-674.	3.0	61
10	Nuclear Translocation of Nrf2 and Expression of Antioxidant Defence Genes in THP-1 Cells Exposed to Carbon Nanotubes. Journal of Biomedical Nanotechnology, 2010, 6, 224-233.	1.1	33
11	An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling <i>in vitro</i> . Nanotoxicology, 2010, 4, 139-149.	3.0	66
12	The effects of serum on the toxicity of manufactured nanoparticles. Toxicology Letters, 2010, 198, 358-365.	0.8	83
13	Interaction between nanoparticles and cytokine proteins: impact on protein and particle functionality. Nanotechnology, 2010, 21, 215104.	2.6	60
14	The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicology and Applied Pharmacology, 2008, 232, 418-427.	2.8	311
15	The effects of PM10 particles and oxidative stress on macrophages and lung epithelial cells: modulating effects of calcium-signaling antagonists. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1444-L1451.	2.9	53
16	The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation. Respiratory Research, 2005, 6, 43.	3.6	36
17	Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radical Biology and Medicine, 2003, 34, 1369-1382.	2.9	384
18	Free Radical Activity of PM 10 : Iron-Mediated Generation of Hydroxyl Radicals. Environmental Health Perspectives, 1997, 105, 1285.	6.0	122