
Inna G Ovsyannikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11680939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mumps virus-specific immune response outcomes and sex-based differences in a cohort of healthy adolescents. Clinical Immunology, 2022, 234, 108912.	1.4	14
2	Proteomic assessment of humoral immune responses in smallpox vaccine recipients. Vaccine, 2022, 40, 789-797.	1.7	9
3	Distinct Homologous and Variant-Specific Memory B-Cell and Antibody Response Over Time After Severe Acute Respiratory Syndrome Coronavirus 2 Messenger RNA Vaccination. Journal of Infectious Diseases, 2022, 226, 23-31.	1.9	17
4	Transcriptional signatures associated with rubella virusâ€specific humoral immunity after a third dose of MMR vaccine in women of childbearing age. European Journal of Immunology, 2021, 51, 1824-1838.	1.6	3
5	Pharmacogenomics and Vaccine Development. Clinical Pharmacology and Therapeutics, 2021, 110, 546-548.	2.3	4
6	Identification of naturally processed Zika virus peptides by mass spectrometry and validation of memory T cell recall responses in Zika convalescent subjects. PLoS ONE, 2021, 16, e0252198.	1.1	9
7	Update on Influenza Vaccines: Needs and Progress. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3599-3603.	2.0	3
8	Inflammasome Activity in Response to Influenza Vaccination Is Maintained in Monocyte-Derived Peripheral Blood Macrophages in Older Adults. Frontiers in Aging, 2021, 2, .	1.2	1
9	Rubella virus-specific humoral immune responses and their interrelationships before and after a third dose of measles-mumps-rubella vaccine in women of childbearing age. Vaccine, 2020, 38, 1249-1257.	1.7	14
10	SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet, The, 2020, 396, 1595-1606.	6.3	511
11	The role of host genetics in the immune response to SARSâ€CoVâ€2 and COVIDâ€19 susceptibility and severity. Immunological Reviews, 2020, 296, 205-219.	2.8	175
12	Associations between markers of cellular and humoral immunity to rubella virus following a third dose of measles-mumps-rubella vaccine. Vaccine, 2020, 38, 7897-7904.	1.7	4
13	Polymorphisms in STING Affect Human Innate Immune Responses to Poxviruses. Frontiers in Immunology, 2020, 11, 567348.	2.2	15
14	Durability of humoral immune responses to rubella following MMR vaccination. Vaccine, 2020, 38, 8185-8193.	1.7	7
15	SARS-CoV-2 Vaccine Development: Current Status. Mayo Clinic Proceedings, 2020, 95, 2172-2188.	1.4	96
16	Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Scientific Reports, 2020, 10, 14179.	1.6	80
17	Current Challenges in Vaccinology. Frontiers in Immunology, 2020, 11, 1181.	2.2	47
18	Immunosenescence and human vaccine immune responses. Immunity and Ageing, 2019, 16, 25.	1.8	323

#	Article	IF	CITATIONS
19	The role of systems biology approaches in determining molecular signatures for the development of more effective vaccines. Expert Review of Vaccines, 2019, 18, 253-267.	2.0	18
20	Seroprevalence and durability of rubella virus antibodies in a highly immunized population. Vaccine, 2019, 37, 3876-3882.	1.7	17
21	Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Experimental Gerontology, 2019, 124, 110632.	1.2	86
22	Sex Differences in Older Adults' Immune Responses to Seasonal Influenza Vaccination. Frontiers in Immunology, 2019, 10, 180.	2.2	57
23	Differential durability of immune responses to measles and mumps following MMR vaccination. Vaccine, 2019, 37, 1775-1784.	1.7	39
24	Zika Vaccine Development: Current Status. Mayo Clinic Proceedings, 2019, 94, 2572-2586.	1.4	69
25	Current perspectives in assessing humoral immunity after measles vaccination. Expert Review of Vaccines, 2019, 18, 75-87.	2.0	39
26	Zika Vaccines. , 2019, , 75-88.		0
27	Polymorphisms in the Wilms Tumor Gene Are Associated With Interindividual Variations in Rubella Virus–Specific Cellular Immunity After Measles-Mumps-Rubella II Vaccination. Journal of Infectious Diseases, 2018, 217, 560-566.	1.9	21
28	Development of vaccines against Zika virus. Lancet Infectious Diseases, The, 2018, 18, e211-e219.	4.6	125
29	Transcriptomic signatures of cellular and humoral immune responses in older adults after seasonal influenza vaccination identified by data-driven clustering. Scientific Reports, 2018, 8, 739.	1.6	34
30	Detection and Quantification of Influenza A/H1N1 Virus-Specific Memory B Cells in Human PBMCs Using ELISpot Assay. Methods in Molecular Biology, 2018, 1808, 221-236.	0.4	6
31	Differential miRNA expression in B cells is associated with inter-individual differences in humoral immune response to measles vaccination. PLoS ONE, 2018, 13, e0191812.	1.1	21
32	Heritability of vaccine-induced measles neutralizing antibody titers. Vaccine, 2017, 35, 1390-1394.	1.7	13
33	Genome-wide associations of CD46 and IFI44L genetic variants with neutralizing antibody response to measles vaccine. Human Genetics, 2017, 136, 421-435.	1.8	59
34	Immunoglobulin GM and KM genes and measles vaccine-induced humoral immunity. Vaccine, 2017, 35, 5444-5447.	1.7	1
35	Prevalence and Morbidity of Undiagnosed Celiac Disease From aÂCommunity-Based Study. Gastroenterology, 2017, 152, 830-839.e5.	0.6	110
36	Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. Science Immunology, 2017, 2, .	5.6	122

#	Article	IF	CITATIONS
37	Integration of Immune Cell Populations, mRNA-Seq, and CpG Methylation to Better Predict Humoral Immunity to Influenza Vaccination: Dependence of mRNA-Seq/CpG Methylation on Immune Cell Populations. Frontiers in Immunology, 2017, 8, 445.	2.2	29
38	Characterization of rubella-specific humoral immunity following two doses of MMR vaccine using proteome microarray technology. PLoS ONE, 2017, 12, e0188149.	1.1	6
39	A large population-based association study between HLA and KIR genotypes and measles vaccine antibody responses. PLoS ONE, 2017, 12, e0171261.	1.1	23
40	Immunosenescence-Related Transcriptomic and Immunologic Changes in Older Individuals Following Influenza Vaccination. Frontiers in Immunology, 2016, 7, 450.	2.2	40
41	System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination. PLoS ONE, 2016, 11, e0152034.	1.1	53
42	The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine. PLoS ONE, 2016, 11, e0158016.	1.1	8
43	Vaccinology in the third millennium: scientific and social challenges. Current Opinion in Virology, 2016, 17, 116-125.	2.6	28
44	Genetically defined race, but not sex, is associated with higher humoral and cellular immune responses to measles vaccination. Vaccine, 2016, 34, 4913-4919.	1.7	24
45	Transcriptional signatures of influenza A/H1N1-specific IgG memory-like B cell response in older individuals. Vaccine, 2016, 34, 3993-4002.	1.7	39
46	Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients. Vaccine, 2016, 34, 3283-3290.	1.7	16
47	Gene signatures related to HAI response following influenza A/H1N1 vaccine in older individuals. Heliyon, 2016, 2, e00098.	1.4	25
48	Vitamin D, leptin and impact on immune response to seasonal influenza A/H1N1 vaccine in older persons. Human Vaccines and Immunotherapeutics, 2016, 12, 691-698.	1.4	16
49	Whole Transcriptome Profiling Identifies CD93 and Other Plasma Cell Survival Factor Genes Associated with Measles-Specific Antibody Response after Vaccination. PLoS ONE, 2016, 11, e0160970.	1.1	20
50	Single nucleotide polymorphisms/haplotypes associated with multiple rubella-specific immune response outcomes post-MMR immunization in healthy children. Immunogenetics, 2015, 67, 547-561.	1.2	20
51	The Impact of Immunosenescence on Humoral Immune Response Variation after Influenza A/H1N1 Vaccination in Older Subjects. PLoS ONE, 2015, 10, e0122282.	1.1	74
52	Polymorphisms in HLA-DPB1 Are Associated With Differences in Rubella Virus-Specific Humoral Immunity After Vaccination. Journal of Infectious Diseases, 2015, 211, 898-905.	1.9	45
53	Variability in Humoral Immunity to Measles Vaccine: New Developments. Trends in Molecular Medicine, 2015, 21, 789-801.	3.5	51
54	Profiling of Measles-Specific Humoral Immunity in Individuals Following Two Doses of MMR Vaccine Using Proteome Microarrays. Viruses, 2015, 7, 1113-1133.	1.5	11

#	Article	IF	CITATIONS
55	The weight of obesity on the human immune response to vaccination. Vaccine, 2015, 33, 4422-4429.	1.7	152
56	Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics. Genetics, 2015, 200, 719-736.	1.2	202
57	Profiles of influenza A/H1N1 vaccine response using hemagglutination-inhibition titers. Human Vaccines and Immunotherapeutics, 2015, 11, 961-969.	1.4	37
58	Adversomics: a new paradigm for vaccine safety and design. Expert Review of Vaccines, 2015, 14, 935-947.	2.0	48
59	Cytokine production associated with smallpox vaccine responses. Immunotherapy, 2014, 6, 1097-1112.	1.0	18
60	Turkey Versus Guinea Pig Red Blood Cells: Hemagglutination Differences Alter Hemagglutination Inhibition Responses Against Influenza A/H1N1. Viral Immunology, 2014, 27, 174-178.	0.6	23
61	Detection of Influenza A/H1N1-Specific Human IgG-Secreting B Cells in Older Adults by ELISPOT Assay. Viral Immunology, 2014, 27, 32-38.	0.6	25
62	A systems biology approach to the effect of aging, immunosenescence and vaccine response. Current Opinion in Immunology, 2014, 29, 62-68.	2.4	87
63	Genetic polymorphisms associated with rubella virus-specific cellular immunity following MMR vaccination. Human Genetics, 2014, 133, 1407-1417.	1.8	26
64	Single-nucleotide polymorphism associations in common with immune responses to measles and rubella vaccines. Immunogenetics, 2014, 66, 663-669.	1.2	19
65	The personal touch: strategies toward personalized vaccines and predicting immune responses to them. Expert Review of Vaccines, 2014, 13, 657-669.	2.0	19
66	Genome-wide SNP associations with rubella-specific cytokine responses in measles-mumps-rubella vaccine recipients. Immunogenetics, 2014, 66, 493-499.	1.2	34
67	HLA alleles associated with the adaptive immune response to smallpox vaccine: a replication study. Human Genetics, 2014, 133, 1083-1092.	1.8	27
68	Associations between race, sex and immune response variations to rubella vaccination in two independent cohorts. Vaccine, 2014, 32, 1946-1953.	1.7	62
69	Characterization of humoral and cellular immunity to rubella vaccine in four distinct cohorts. Immunologic Research, 2014, 58, 1-8.	1.3	20
70	Leptin and leptin-related gene polymorphisms, obesity, and influenza A/H1N1 vaccine-induced immune responses in older individuals. Vaccine, 2014, 32, 881-887.	1.7	60
71	HLA genotypes and rubella vaccine immune response: Additional evidence. Vaccine, 2014, 32, 4206-4213.	1.7	18
72	Associations between Single Nucleotide Polymorphisms in Cellular Viral Receptors and Attachment Factor-Related Genes and Humoral Immunity to Rubella Vaccination. PLoS ONE, 2014, 9, e99997.	1.1	18

#	Article	IF	CITATIONS
73	Granzyme B ELISPOT assay to measure influenza-specific cellular immunity. Journal of Immunological Methods, 2013, 398-399, 44-50.	0.6	32
74	Genetic Variation in IL18R1 and IL18 Genes and Inteferon Î ³ ELISPOT Response to Smallpox Vaccination: An Unexpected Relationship. Journal of Infectious Diseases, 2013, 208, 1422-1430.	1.9	18
75	Vaccinomics, adversomics, and the immune response network theory: Individualized vaccinology in the 21st century. Seminars in Immunology, 2013, 25, 89-103.	2.7	113
76	The genetic basis for interindividual immune response variation to measles vaccine: new understanding and new vaccine approaches. Expert Review of Vaccines, 2013, 12, 57-70.	2.0	82
77	Race and sex-based differences in cytokine immune responses to smallpox vaccine in healthy individuals. Human Immunology, 2013, 74, 1263-1266.	1.2	48
78	Associations between polymorphisms in the antiviral TRIM genes and measles vaccine immunity. Human Immunology, 2013, 74, 768-774.	1.2	24
79	Human Leukocyte Antigens and Cellular Immune Responses to Anthrax Vaccine Adsorbed. Infection and Immunity, 2013, 81, 2584-2591.	1.0	22
80	Genome-Wide Characterization of Transcriptional Patterns in High and Low Antibody Responders to Rubella Vaccination. PLoS ONE, 2013, 8, e62149.	1.1	33
81	Associations Between Demographic Variables and Multiple Measles-Specific Innate and Cell-Mediated Immune Responses After Measles Vaccination. Viral Immunology, 2012, 25, 29-36.	0.6	61
82	Effects of vitamin A and D receptor gene polymorphisms/haplotypes on immune responses to measles vaccine. Pharmacogenetics and Genomics, 2012, 22, 20-31.	0.7	38
83	Genome-wide analysis of polymorphisms associated with cytokine responses in smallpox vaccine recipients. Human Genetics, 2012, 131, 1403-1421.	1.8	75
84	Genome-wide genetic associations with IFNÎ ³ response to smallpox vaccine. Human Genetics, 2012, 131, 1433-1451.	1.8	47
85	High-Dimensional Gene Expression Profiling Studies in High and Low Responders to Primary Smallpox Vaccination. Journal of Infectious Diseases, 2012, 206, 1512-1520.	1.9	27
86	Multigenic control of measles vaccine immunity mediated by polymorphisms in measles receptor, innate pathway, and cytokine genes. Vaccine, 2012, 30, 2159-2167.	1.7	33
87	Consistency of HLA associations between two independent measles vaccine cohorts: A replication study. Vaccine, 2012, 30, 2146-2152.	1.7	44
88	Genome-wide association study of antibody response to smallpox vaccine. Vaccine, 2012, 30, 4182-4189.	1.7	80
89	Independence of measles-specific humoral and cellular immune responses to vaccination. Human Immunology, 2012, 73, 474-479.	1.2	14
90	Replication of associations between cytokine and cytokine receptor single nucleotide polymorphisms and measles-specific adaptive immunophenotypic extremes. Human Immunology, 2012, 73, 636-640.	1.2	12

#	Article	IF	CITATIONS
91	Understanding the immune response to seasonal influenza vaccination in older adults: a systems biology approach. Expert Review of Vaccines, 2012, 11, 985-994.	2.0	128
92	Impact of cytokine and cytokine receptor gene polymorphisms on cellular immunity after smallpox vaccination. Gene, 2012, 510, 59-65.	1.0	34
93	Response surface methodology to determine optimal measles-specific cytokine responses in human peripheral blood mononuclear cells. Journal of Immunological Methods, 2012, 382, 220-223.	0.6	2
94	Detection of Vaccinia Virus-Specific IFNÎ ³ and IL-10 Secretion from Human PBMCs and CD8+ T Cells by ELISPOT. Methods in Molecular Biology, 2012, 792, 199-218.	0.4	16
95	A large observational study to concurrently assess persistence of measles specific B-cell and T-cell immunity in individuals following two doses of MMR vaccine. Vaccine, 2011, 29, 4485-4491.	1.7	66
96	Human leukocyte antigen associations with humoral and cellular immunity following a second dose of measles-containing vaccine: Persistence, dampening, and extinction of associations found after a first dose. Vaccine, 2011, 29, 7982-7991.	1.7	17
97	Associations between single nucleotide polymorphisms and haplotypes in cytokine and cytokine receptor genes and immunity to measles vaccination. Vaccine, 2011, 29, 7883-7895.	1.7	62
98	Genetic polymorphisms in host antiviral genes: Associations with humoral and cellular immunity to measles vaccine. Vaccine, 2011, 29, 8988-8997.	1.7	64
99	Correlations Between Vaccinia-Specific Immune Responses Within a Cohort of Armed Forces Members. Viral Immunology, 2011, 24, 415-420.	0.6	16
100	Vaccinomics: Current Findings, Challenges and Novel Approaches for Vaccine Development. AAPS Journal, 2011, 13, 438-444.	2.2	49
101	The role of polymorphisms in Toll-like receptors and their associated intracellular signaling genes in measles vaccine immunity. Human Genetics, 2011, 130, 547-61.	1.8	60
102	Systems biology approaches to new vaccine development. Current Opinion in Immunology, 2011, 23, 436-443.	2.4	97
103	Common SNPs/Haplotypes in IL18R1 and IL18 Genes Are Associated With Variations in Humoral Immunity to Smallpox Vaccination in Caucasians and African Americans. Journal of Infectious Diseases, 2011, 204, 433-441.	1.9	34
104	The Association of CD46, SLAM and CD209 Cellular Receptor Gene SNPs with Variations in Measles Vaccine-Induced Immune Responses: A Replication Study and Examination of Novel Polymorphisms. Human Heredity, 2011, 72, 206-223.	0.4	58
105	Vaccinomics and a New Paradigm for the Development of Preventive Vaccines Against Viral Infections. OMICS A Journal of Integrative Biology, 2011, 15, 625-636.	1.0	82
106	Vaccinomics and Personalized Vaccinology: Is Science Leading Us Toward a New Path of Directed Vaccine Development and Discovery?. PLoS Pathogens, 2011, 7, e1002344.	2.1	90
107	Human Leukocyte Antigen Genotypes in the Genetic Control of Adaptive Immune Responses to Smallpox Vaccine. Journal of Infectious Diseases, 2011, 203, 1546-1555.	1.9	31
108	A Qualitative and Quantitative Comparison of Two Rubella Virus-Specific IgG Antibody Immunoassays. Viral Immunology, 2010, 23, 353-357.	0.6	10

INNA G OVSYANNIKOVA

#	Article	IF	CITATIONS
109	SNP/haplotype associations in cytokine and cytokine receptor genes and immunity to rubella vaccine. Immunogenetics, 2010, 62, 197-210.	1.2	45
110	Rubella vaccine-induced cellular immunity: evidence of associations with polymorphisms in the Toll-like, vitamin A and D receptors, and innate immune response genes. Human Genetics, 2010, 127, 207-221.	1.8	90
111	Associations between SNPs in candidate immune-relevant genes and rubella antibody levels: a multigenic assessment. BMC Immunology, 2010, 11, 48.	0.9	40
112	Differential cellular immune responses to wildâ€ŧype and attenuated edmonston tag measles virus strains are primarily defined by the viral phosphoprotein gene. Journal of Medical Virology, 2010, 82, 1966-1975.	2.5	14
113	Polymorphisms in the Vitamin A Receptor and Innate Immunity Genes Influence the Antibody Response to Rubella Vaccination. Journal of Infectious Diseases, 2010, 201, 207-213.	1.9	58
114	Effect of human leukocyte antigen homozygosity on rubella vaccine–induced humoral and cell-mediated immune responses. Human Immunology, 2010, 71, 128-135.	1.2	13
115	2′-5′-Oligoadenylate synthetase single-nucleotide polymorphisms and haplotypes are associated with variations in immune responses to rubella vaccine. Human Immunology, 2010, 71, 383-391.	1.2	45
116	Predominant inflammatory cytokine secretion pattern in response to two doses of live rubella vaccine in healthy vaccinees. Cytokine, 2010, 50, 24-29.	1.4	28
117	Extended LTA, TNF, LST1 and HLA Gene Haplotypes and Their Association with Rubella Vaccine-Induced Immunity. PLoS ONE, 2010, 5, e11806.	1.1	34
118	Response surface methodology to determine optimal cytokine responses in human peripheral blood mononuclear cells after smallpox vaccination. Journal of Immunological Methods, 2009, 341, 97-105.	0.6	20
119	The immunology of smallpox vaccines. Current Opinion in Immunology, 2009, 21, 314-320.	2.4	92
120	Application of pharmacogenomics to vaccines. Pharmacogenomics, 2009, 10, 837-852.	0.6	113
121	Trends affecting the future of vaccine development and delivery: The role of demographics, regulatory science, the anti-vaccine movement, and vaccinomics. Vaccine, 2009, 27, 3240-3244.	1.7	93
122	Influence of host genetic variation on rubella-specific T cell cytokine responses following rubella vaccination. Vaccine, 2009, 27, 3359-3366.	1.7	31
123	HLA haplotype and supertype associations with cellular immune responses and cytokine production in healthy children after rubella vaccine. Vaccine, 2009, 27, 3349-3358.	1.7	18
124	Gender effects on humoral immune responses to smallpox vaccine. Vaccine, 2009, 27, 3319-3323.	1.7	85
125	Replication of rubella vaccine population genetic studies: Validation of HLA genotype and humoral response associations. Vaccine, 2009, 27, 6926-6931.	1.7	45
126	Discovery of naturally processed and HLA-presented class I peptides from vaccinia virus infection using mass spectrometry for vaccine development. Vaccine, 2009, 28, 38-47.	1.7	43

#	Article	IF	CITATIONS
127	Genetic basis for variation of vaccine response: our studies with rubella vaccine. Paediatrics and Child Health (United Kingdom), 2009, 19, S156-S159.	0.2	11
128	Adversomics: The Emerging Field of Vaccine Adverse Event Immunogenetics. Pediatric Infectious Disease Journal, 2009, 28, 431-432.	1.1	65
129	Associations between SNPs in toll-like receptors and related intracellular signaling molecules and immune responses to measles vaccine: Preliminary results. Vaccine, 2008, 26, 1731-1736.	1.7	137
130	Vaccine immunogenetics: Bedside to bench to population. Vaccine, 2008, 26, 6183-6188.	1.7	63
131	Immunogenetics of seasonal influenza vaccine response. Vaccine, 2008, 26, D35-D40.	1.7	91
132	Human Leukocyte Antigen and Cytokine Receptor Gene Polymorphisms Associated With Heterogeneous Immune Responses to Mumps Viral Vaccine. Pediatrics, 2008, 121, e1091-e1099.	1.0	72
133	Personalized vaccines: the emerging field of vaccinomics. Expert Opinion on Biological Therapy, 2008, 8, 1659-1667.	1.4	134
134	Development of a Novel Efficient Fluorescence-Based Plaque Reduction Microneutralization Assay for Measles Virus Immunity. Vaccine Journal, 2008, 15, 1054-1059.	3.2	48
135	Associations between Measles Vaccine Immunity and Singleâ€Nucleotide Polymorphisms in Cytokine and Cytokine Receptor Genes. Journal of Infectious Diseases, 2007, 195, 21-29.	1.9	73
136	Relationship between HLA Polymorphisms and Gamma Interferon and Interleukin-10 Cytokine Production in Healthy Individuals after Rubella Vaccination. Vaccine Journal, 2007, 14, 115-122.	3.2	31
137	HLA supertypes and immune responses to measles–mumps–rubella viral vaccine: Findings and implications for vaccine design. Vaccine, 2007, 25, 3090-3100.	1.7	63
138	Studies of twins in vaccinology. Vaccine, 2007, 25, 3160-3164.	1.7	21
139	Variations in measles vaccine–specific humoral immunity by polymorphisms in SLAM and CD46 measles virus receptors. Journal of Allergy and Clinical Immunology, 2007, 120, 666-672.	1.5	61
140	Assessing participation bias in a population-based study of measles-mumps-rubella vaccine immunity in children and adolescents aged 12?18. Paediatric and Perinatal Epidemiology, 2007, 21, 376-384.	0.8	7
141	HLA homozygosity does not adversely affect measles vaccine-induced cytokine responses. Virology, 2007, 364, 87-94.	1.1	16
142	Human leukocyte antigen polymorphisms: variable humoral immune responses to viral vaccines. Expert Review of Vaccines, 2006, 5, 33-43.	2.0	34
143	Human leukocyte antigen and interleukin 2, 10 and 12p40 cytokine responses to measles: Is there evidence of the HLA effect?. Cytokine, 2006, 36, 173-179.	1.4	20
144	Importance of HLA-DQ and HLA-DP polymorphisms in cytokine responses to naturally processed HLA-DR-derived measles virus peptides. Vaccine, 2006, 24, 5381-5389.	1.7	11

#	Article	IF	CITATIONS
145	Human Leukocyte Antigen Haplotypes in the Genetic Control of Immune Response to Measlesâ€Mumpsâ€Rubella Vaccine. Journal of Infectious Diseases, 2006, 193, 655-663.	1.9	86
146	Accurate mass precursor ion data and tandem mass spectrometry identify a class I human leukocyte antigen A*0201-presented peptide originating from vaccinia virus. Journal of the American Society for Mass Spectrometry, 2005, 16, 1812-1817.	1.2	24
147	Identification of HLA-DRB1-bound self-peptides following measles virus infection. Journal of Immunological Methods, 2005, 297, 153-167.	0.6	10
148	HLA class II alleles and measles virus-specific cytokine immune response following two doses of measles vaccine. Immunogenetics, 2005, 56, 798-807.	1.2	51
149	Immunologic significance of HLA class I genes in measles virus-specific IFN-Î ³ and IL-4 cytokine immune responses. Immunogenetics, 2005, 57, 828-836.	1.2	37
150	Human Leukocyte Antigen Class II Alleles and Rubellaâ€Specific Humoral and Cellâ€Mediated Immunity following Measlesâ€Mumpsâ€Rubella–II Vaccination. Journal of Infectious Diseases, 2005, 191, 515-519.	1.9	63
151	Detection of Measles Virus-Specific Interferon-Î ³ -Secreting T-Cells by ELISPOT. , 2005, 302, 207-218.		19
152	Identification of Class II HLA-DRB1*03-Bound Measles Virus Peptides by 2D-Liquid Chromatography Tandem Mass Spectrometry. Journal of Proteome Research, 2005, 4, 2243-2249.	1.8	26
153	Identification of Th0 cells responding to measles virus. Human Immunology, 2005, 66, 104-115.	1.2	12
154	Extinction of the Human Leukocyte Antigen Homozygosity Effect After Two Doses of the Measles-Mumps-Rubella Vaccine. Human Immunology, 2005, 66, 788-798.	1.2	26
155	Immune Activation at Effector and Gene Expression Levels After Measles Vaccination in Healthy Individuals: A Pilot Study. Human Immunology, 2005, 66, 1125-1136.	1.2	9
156	Correlates of lymphoproliferative responses to measles, mumps, and rubella (MMR) virus vaccines following MMR-II vaccination in healthy children. Clinical Immunology, 2005, 115, 154-161.	1.4	32
157	Identification and Characterization of Novel, Naturally Processed Measles Virus Class II HLA-DRB1 Peptides. Journal of Virology, 2004, 78, 42-51.	1.5	31
158	Interleukin-4 induced by measles virus and measles-derived peptides as measured by IL-4 receptor-blocking ELISA. Journal of Immunological Methods, 2004, 287, 217-225.	0.6	25
159	Variation in vaccine response in normal populations. Pharmacogenomics, 2004, 5, 417-427.	0.6	59
160	Associations between human leukocyte antigen (HLA) alleles and very high levels of measles antibody following vaccination. Vaccine, 2004, 22, 1914-1920.	1.7	53
161	Influence of HLA-DRB1 alleles on lymphoproliferative responses to a naturally processed and presented measles virus phosphoprotein in measles immunized individuals. Human Immunology, 2004, 65, 209-217.	1.2	7
162	The contribution of HLA class I antigens in immune status following two doses of rubella vaccination. Human Immunology, 2004, 65, 1506-1515.	1.2	83

#	Article	IF	CITATIONS
163	Naturally processed measles virus peptide eluted from class II HLA-DRB1*03 recognized by T lymphocytes from human blood. Virology, 2003, 312, 495-506.	1.1	29
164	Associations between human leukocyte antigen (HLA) alleles and very high levels of measles antibody following vaccination. Vaccine, 2003, 22, 1914-1914.	1.7	0
165	Associations between measles antibody levels and the protein structure of class II human leukocyte antigens. Human Immunology, 2003, 64, 696-707.	1.2	5
166	Cytokine production patterns and antibody response to measles vaccine. Vaccine, 2003, 21, 3946-3953.	1.7	56
167	Frequency of Measles Virus-Specific CD4 + and CD8 + T Cells in Subjects Seronegative or Highly Seropositive for Measles Vaccine. Vaccine Journal, 2003, 10, 411-416.	3.2	81
168	Associations between Human Leukocyte Antigen Homozygosity and Antibody Levels to Measles Vaccine. Journal of Infectious Diseases, 2002, 185, 1545-1549.	1.9	40
169	The role of mass spectrometry in vaccine development. Vaccine, 2001, 19, 2692-2700.	1.7	32
170	Identification of an association between HLA class II alleles and low antibody levels after measles immunization. Vaccine, 2001, 20, 430-438.	1.7	95
171	Isolation and rapid identification of an abundant self-peptide from class II HLA-DRB1*0401 alleles induced by measles vaccine virus infection. Journal of Immunological Methods, 2000, 246, 1-12.	0.6	13
172	Soybean aeroallergen around the port of New Orleans: a potential cause of asthma. Aerobiologia, 1996, 12, 173-176.	0.7	2
173	Soybean aeroallergen around the port of New Orleans: A potential cause of asthma. Aerobiologia, 1996, 12, 173-176.	0.7	2