Guodong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1168077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signaling peptides direct the art of rebirth. Trends in Plant Science, 2022, , .	8.8	5
2	A group of <scp>CLE</scp> peptides regulates <i>de novo</i> shoot regeneration in <i>Arabidopsis thaliana</i> . New Phytologist, 2022, 235, 2300-2312.	7.3	15
3	Genome-Wide Identification and Characterization of Main Histone Modifications in Sorghum Decipher Regulatory Mechanisms Involved by mRNA and Long Noncoding RNA Genes. Journal of Agricultural and Food Chemistry, 2021, 69, 2337-2347.	5.2	4
4	Functional interplay of histone lysine 2-hydroxyisobutyrylation and acetylation in Arabidopsis under dark-induced starvation. Nucleic Acids Research, 2021, 49, 7347-7360.	14.5	12
5	Toward a Molecular Understanding of Rhizosphere, Phyllosphere, and Spermosphere Interactions in Plant Growth and Stress Response. Critical Reviews in Plant Sciences, 2021, 40, 479-500.	5.7	15
6	Reactive oxygen species regulate auxin levels to mediate adventitious root induction in <i>Arabidopsis</i> hypocotyl cuttings. Journal of Integrative Plant Biology, 2020, 62, 912-926.	8.5	33
7	UDPâ€Api/UDPâ€Xyl synthases affect plant development by controlling the content of UDPâ€Api to regulate the RGâ€IIâ€borate complex. Plant Journal, 2020, 104, 252-267.	5.7	12
8	Composite slidingâ€mode consensus algorithms for higherâ€order multiâ€agent systems subject to disturbances. IET Control Theory and Applications, 2020, 14, 291-303.	2.1	8
9	Distributed finiteâ€time optimisation algorithm for secondâ€order multiâ€agent systems subject to mismatched disturbances. IET Control Theory and Applications, 2020, 14, 2977-2988.	2.1	12
10	Assembly and Annotation of a Draft Genome of the Medicinal Plant Polygonum cuspidatum. Frontiers in Plant Science, 2019, 10, 1274.	3.6	36
11	Auxinâ€mediated statolith production for root gravitropism. New Phytologist, 2019, 224, 761-774.	7.3	55
12	Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights. Plant Science, 2019, 285, 1-13.	3.6	68
13	Fine-Tuning Stomatal Movement Through Small Signaling Peptides. Frontiers in Plant Science, 2019, 10, 69.	3.6	51
14	The Calcium-Dependent Protein Kinase CPK33 Mediates Strigolactone-Induced Stomatal Closure in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 1630.	3.6	10
15	HY5 Contributes to Light-Regulated Root System Architecture Under a Root-Covered Culture System. Frontiers in Plant Science, 2019, 10, 1490.	3.6	32
16	CLE9 peptideâ€induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in <scp><i>Arabidopsis thaliana</i></scp> . Plant, Cell and Environment, 2019, 42, 1033-1044.	5.7	101
17	Strigolactones are common regulators in induction of stomatal closure <i>in planta</i> . Plant Signaling and Behavior, 2018, 13, e1444322.	2.4	58
18	Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development (Cambridge), 2018, 145, .	2.5	75

GUODONG WANG

#	Article	IF	CITATIONS
19	Strigolactoneâ€ŧriggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acidâ€independent manner. New Phytologist, 2018, 217, 290-304.	7.3	121
20	Characterization and functional analysis of four HYH splicing variants in Arabidopsis hypocotyl elongation. Gene, 2017, 619, 44-49.	2.2	32
21	Transcriptional regulation of CLE genes by cytokinin in Arabidopsis shoots and roots. Plant Growth Regulation, 2017, 81, 167-173.	3.4	4
22	Dissection of HY5/HYH expression in Arabidopsis reveals a root-autonomous HY5-mediated photomorphogenic pathway. PLoS ONE, 2017, 12, e0180449.	2.5	47
23	Commentary: Primary Transcripts of microRNAs Encode Regulatory Peptides. Frontiers in Plant Science, 2016, 7, 1436.	3.6	18
24	The Multifunction of CLAVATA2 in Plant Development and Immunity. Frontiers in Plant Science, 2016, 7, 1573.	3.6	22
25	The <i>CLE</i> gene family in <i>Populus trichocarpa</i> . Plant Signaling and Behavior, 2016, 11, e1191734.	2.4	7
26	Identification and characterization of the Populus trichocarpa CLE family. BMC Genomics, 2016, 17, 174.	2.8	24
27	New insights into receptor-like protein functions in Arabidopsis. Plant Signaling and Behavior, 2016, 11, e1197469.	2.4	5
28	Transcriptional regulation of receptor-like protein genes by environmental stresses and hormones and their overexpression activities in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 3339-3351.	4.8	22
29	PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis. Plant Physiology, 2016, 170, 956-970.	4.8	82
30	CLE Peptide Signaling and Crosstalk with Phytohormones and Environmental Stimuli. Frontiers in Plant Science, 2015, 6, 1211.	3.6	59
31	CLE Peptides in Vascular Development. Journal of Integrative Plant Biology, 2013, 55, 389-394.	8.5	21
32	New aspects of CLAVATA2, a versatile gene in the regulation of Arabidopsis development. Journal of Plant Physiology, 2011, 168, 403-407.	3.5	8
33	CLE peptide signaling during plant development. Protoplasma, 2010, 240, 33-43.	2.1	77
34	The Diverse Roles of Extracellular Leucine-rich Repeat-containing Receptor-like Proteins in Plants. Critical Reviews in Plant Sciences, 2010, 29, 285-299.	5.7	69
35	Functional Analyses of the CLAVATA2-Like Proteins and Their Domains That Contribute to CLAVATA2 Specificity. Plant Physiology, 2009, 152, 320-331.	4.8	36
36	A Genome-Wide Functional Investigation into the Roles of Receptor-Like Proteins in Arabidopsis Â. Plant Physiology, 2008, 147, 503-517.	4.8	266