Jun Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1168045/publications.pdf

Version: 2024-02-01

48 papers	1,899 citations	19 h-index	254106 43 g-index
48	48	48	857 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Runge–Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes. Journal of Computational Physics, 2008, 227, 4330-4353.	1.9	426
2	Hermite WENO Schemes and Their Application asÂLimiters for Runge-Kutta Discontinuous Galerkin Method, III: Unstructured Meshes. Journal of Scientific Computing, 2009, 39, 293-321.	1.1	342
3	A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. Journal of Computational Physics, 2016, 318, 110-121.	1.9	167
4	Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. Journal of Computational Physics, 2013, 248, 200-220.	1.9	139
5	A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. Journal of Computational Physics, 2018, 375, 659-683.	1.9	96
6	A New Type of Finite Volume WENO Schemes for Hyperbolic Conservation Laws. Journal of Scientific Computing, 2017, 73, 1338-1359.	1.1	71
7	Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter. Communications in Computational Physics, 2016, 19, 944-969.	0.7	50
8	A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes. Journal of Computational Physics, 2019, 392, 19-33.	1.9	48
9	New Finite Volume Weighted Essentially Nonoscillatory Schemes on Triangular Meshes. SIAM Journal of Scientific Computing, 2018, 40, A903-A928.	1.3	41
10	Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter on Unstructured Meshes. Communications in Computational Physics, 2017, 21, 623-649.	0.7	35
11	A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes. Journal of Computational Physics, 2017, 349, 220-232.	1.9	34
12	A new hybrid WENO scheme for hyperbolic conservation laws. Computers and Fluids, 2019, 179, 422-436.	1.3	34
13	A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes. Science in China Series A: Mathematics, 2008, 51, 1549-1560.	0.5	32
14	A new type of third-order finite volume multi-resolution WENO schemes on tetrahedral meshes. Journal of Computational Physics, 2020, 406, 109212.	1.9	27
15	RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations. Applied Numerical Mathematics, 2011, 61, 554-580.	1.2	25
16	Runge-Kutta Discontinuous Galerkin Method Using Weno-Type Limiters: Three-Dimensional Unstructured Meshes. Communications in Computational Physics, 2012, 11, 985-1005.	0.7	22
17	Numerical study on the convergence to steady state solutions of a new class of high order WENO schemes. Journal of Computational Physics, 2017, 349, 80-96.	1.9	22
18	High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters. Journal of Computational Physics, 2020, 404, 109105.	1.9	21

#	Article	IF	CITATIONS
19	WENO Schemes and Their Application as Limiters for RKDG Methods Based on Trigonometric Approximation Spaces. Journal of Scientific Computing, 2013, 55, 606-644.	1.1	20
20	Hermite WENO schemes for Hamilton–Jacobi equations on unstructured meshes. Journal of Computational Physics, 2013, 254, 76-92.	1.9	19
21	Runge–Kutta discontinuous Galerkin method with front tracking method for solving the compressible two-medium flow. Computers and Fluids, 2016, 126, 1-11.	1.3	18
22	A new fifth order finite difference <scp>WENO</scp> scheme for <scp>H</scp> amiltonâ€ <scp>J</scp> acobi equations. Numerical Methods for Partial Differential Equations, 2017, 33, 1095-1113.	2.0	18
23	A brief review on the convergence to steady state solutions of Euler equations with high-order WENO schemes. Advances in Aerodynamics, 2019, 1, .	1.3	16
24	A new fifth-order finite difference well-balanced multi-resolution WENO scheme for solving shallow water equations. Computers and Mathematics With Applications, 2020, 80, 1387-1404.	1.4	15
25	High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular meshes. Applied Numerical Mathematics, 2020, 153, 519-539.	1.2	15
26	RKDG methods with WENO limiters for unsteady cavitating flow. Computers and Fluids, 2012, 57, 52-65.	1.3	14
27	Local DG method using WENO type limiters for convection–diffusion problems. Journal of Computational Physics, 2011, 230, 4353-4375.	1.9	13
28	A low dissipation finite difference nested multi-resolution WENO scheme for Euler/Navier-Stokes equations. Journal of Computational Physics, 2021, 429, 110006.	1.9	12
29	A new fifth-order alternative finite difference multi-resolution WENO scheme for solving compressible flow. Computer Methods in Applied Mechanics and Engineering, 2021, 382, 113853.	3.4	11
30	A Quasi-Conservative Discontinuous Galerkin Method for Multi-component Flows Using the Non-oscillatory Kinetic Flux. Journal of Scientific Computing, 2021, 87, 1.	1.1	10
31	Convergence to Steady-State Solutions of the New Type of High-Order Multi-resolution WENO Schemes: a Numerical Study. Communications on Applied Mathematics and Computation, 2020, 2, 429-460.	0.7	9
32	A simple, high-order and compact WENO limiter for RKDG method. Computers and Mathematics With Applications, 2020, 79, 317-336.	1.4	9
33	A New Sixth-Order Finite Difference WENO Scheme for Fractional Differential Equations. Journal of Scientific Computing, 2021, 87, 1.	1.1	9
34	Absolutely convergent fixed-point fast sweeping WENO methods for steady state of hyperbolic conservation laws. Journal of Computational Physics, 2021, 443, 110516.	1.9	9
35	Finite Volume Hermite WENO Schemes for Solving the Hamilton-Jacobi Equation. Communications in Computational Physics, 2014, 15, 959-980.	0.7	7
36	A new type of increasingly high-order multi-resolution trigonometric WENO schemes for hyperbolic conservation laws and highly oscillatory problems. Computers and Fluids, 2020, 200, 104448.	1.3	7

#	Article	IF	CITATIONS
37	High-order Runge-Kutta discontinuous Galerkin methods with multi-resolution WENO limiters for solving steady-state problems. Applied Numerical Mathematics, 2021, 165, 482-499.	1.2	7
38	Finite volume Hermite WENO schemes for solving the Hamilton–Jacobi equations II: Unstructured meshes. Computers and Mathematics With Applications, 2014, 68, 1137-1150.	1.4	6
39	A Riemann problem based method for solving compressible and incompressible flows. Journal of Computational Physics, 2017, 330, 1-20.	1.9	5
40	An efficient fifth-order finite difference multi-resolution WENO scheme for inviscid and viscous flow problems. Computers and Fluids, 2021, 230, 105138.	1.3	5
41	Runge-Kutta Discontinuous Galerkin Method with Front Tracking Method for Solving the Compressible Two-Medium Flow on Unstructured Meshes. Advances in Applied Mathematics and Mechanics, 2017, 9, 73-91.	0.7	3
42	New Finite Difference Hermite WENO Schemes for Hamilton–Jacobi Equations. Journal of Scientific Computing, 2020, 83, 1.	1.1	3
43	New Finite Difference Mapped WENO Schemes with Increasingly High Order of Accuracy. Communications on Applied Mathematics and Computation, 2023, 5, 64-96.	0.7	3
44	RKDG with WENO Type Limiters. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2010, , 67-80.	0.2	1
45	Finite Time Prescribed Performance Control for Uncertain Second-Order Nonlinear Systems. Journal of Mathematics, 2022, 2022, 1-7.	0.5	1
46	A Fixed-Point Fast Sweeping WENO Method with Inverse Lax-Wendroff Boundary Treatment for Steady State of Hyperbolic Conservation Laws. Communications on Applied Mathematics and Computation, 2023, 5, 403-427.	0.7	1
47	A New Fifth-Order Finite Difference Compact Reconstruction Unequal-Sized WENO Scheme for Fractional Differential Equations. Fractal and Fractional, 2022, 6, 294.	1.6	1
48	New mapped unequal-sized trigonometric WENO scheme for hyperbolic conservation laws. Computers and Fluids, 2022, 245, 105585.	1.3	0