
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11680242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food web perspectives and methods for riverine fish conservation. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	6.5	8
2	Productivity and Connectivity in Tropical Riverscapes of Northern Australia: Ecological Insights for Management. Ecosystems, 2017, 20, 492-514.	3.4	44
3	A framework for strategic river restoration in China. Water International, 2016, 41, 998-1015.	1.0	13
4	A Comprehensive Approach for Habitat Restoration in the Columbia Basin. Fisheries, 2015, 40, 124-135.	0.8	43
5	Environmental change: prospects for conservation and agriculture in a southwest Australia biodiversity hotspot. Ecology and Society, 2015, 20, .	2.3	9
6	Does flood rhythm drive ecosystem responses in tropical riverscapes?. Ecology, 2015, 96, 684-692.	3.2	77
7	Flow–ecology relationships: closing the loop on effective environmental flows. Marine and Freshwater Research, 2014, 65, 133.	1.3	142
8	Riparian Ecosystems in the 21st Century: Hotspots for Climate Change Adaptation?. Ecosystems, 2013, 16, 359-381.	3.4	275
9	Riparian Landscapes. , 2013, , 461-468.		2
10	Predicting Novel Riparian Ecosystems in a Changing Climate. Ecosystems, 2013, 16, 382-400.	3.4	63
11	Socio-ecological complexity and the restoration of river ecosystems. Inland Waters, 2013, 3, 391-410.	2.2	54
12	How did fixed-width buffers become standard practice for protecting freshwaters and their riparian areas from forest harvest practices?. Freshwater Science, 2012, 31, 232-238.	1.8	136
13	Developing a broader scientific foundation for river restoration: Columbia River food webs. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21201-21207.	7.1	119
14	Strategic planning for instream flow restoration: a case study of potential climate change impacts in the central Columbia River basin. Global Change Biology, 2012, 18, 3071-3086.	9.5	13
15	Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings. Earth-Science Reviews, 2011, 106, 307-331.	9.1	323
16	Global alteration of freshwaters: influences on human and environmental wellâ€being. Ecological Research, 2011, 26, 865-873.	1.5	87
17	Relationships between salmon abundance and tree-ring l´ ¹⁵ N: three objective tests. Canadian Journal of Forest Research, 2011, 41, 2423-2432.	1.7	8
18	A Process-Based View of Floodplain Forest Patterns in Coastal River Valleys of the Pacific Northwest. Ecosystems, 2010, 13, 1-31.	3.4	79

#	Article	IF	CITATIONS
19	Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology, 2010, 55, 86-107.	2.4	724
20	The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology, 2010, 55, 147-170.	2.4	1,227
21	Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater Biology, 2010, 55, 1-16.	2.4	465
22	Patterns of conifer establishment and vigor on montane river floodplains in Olympic National Park, Washington, USA. Canadian Journal of Forest Research, 2010, 40, 410-422.	1.7	11
23	A Quantitative Model of Soil Organic Matter Accumulation During Floodplain Primary Succession. Ecosystems, 2009, 12, 1352-1368.	3.4	24
24	Nitrate removal in the hyporheic zone of a salmon river in Alaska. River Research and Applications, 2009, 25, 367-375.	1.7	91
25	Plants intertwine fluvial landform dynamics with ecological succession and natural selection: a niche construction perspective for riparian systems. Global Ecology and Biogeography, 2009, 18, 507-520.	5.8	106
26	The Evolution of Conservation Management Philosophy: Science, Environmental Change and Social Adjustments in Kruger National Park. Ecosystems, 2008, 11, 173-192.	3.4	71
27	Andean Influences on the Biogeochemistry and Ecology of the Amazon River. BioScience, 2008, 58, 325-338.	4.9	121
28	Large African herbivores decrease herbaceous plant biomass while increasing plant species richness in a semi-arid savanna toposequence. Journal of Arid Environments, 2008, 72, 891-903.	2.4	45
29	Flow variability and the biophysical vitality of river systems. Comptes Rendus - Geoscience, 2008, 340, 629-643.	1.2	206
30	A grand challenge for freshwater research: understanding the global water system. Environmental Research Letters, 2008, 3, 010202.	5.2	74
31	Flood plains: critically threatened ecosystems. , 2008, , 45-62.		113
32	SOURCES AND DYNAMICS OF LARGE LOGS IN A TEMPERATE FLOODPLAIN RIVER. , 2007, 17, 1127-1141.		70
33	POSTFIRE RESPONSE OF FLOOD-REGENERATING RIPARIAN VEGETATION IN A SEMI-ARID LANDSCAPE. Ecology, 2007, 88, 2094-2104.	3.2	25
34	RECONSTRUCTION OF PACIFIC SALMON ABUNDANCE FROM RIPARIAN TREE-RING GROWTH. , 2007, 17, 1523-1542.		20
35	Restoring Riverine Landscapes: The Challenge of Identifying Priorities, Reference States, and Techniques. Ecology and Society, 2007, 12, .	2.3	66
36	Ecological Linkages Between Headwaters and Downstream Ecosystems: Transport of Organic Matter, Invertebrates, and Wood Down Headwater Channels ¹ . Journal of the American Water Resources Association, 2007, 43, 72-85.	2.4	241

#	Article	IF	CITATIONS
37	Nitrogen fixation by the savanna tree Philenoptera violacea (Klotzsch) Schrire (Apple leaf) of different ages in a semi-arid riparian landscape. South African Journal of Botany, 2007, 73, 163-167.	2.5	10
38	Fire in the Riparian Zone: Characteristics and Ecological Consequences. Ecosystems, 2007, 10, 673-687.	3.4	197
39	FATE OF NITROGEN IN RIPARIAN FOREST SOILS AND TREES: AN15N TRACER STUDY SIMULATING SALMON DECAY. Ecology, 2006, 87, 1256-1266.	3.2	31
40	THE CHALLENGE OF PROVIDING ENVIRONMENTAL FLOW RULES TO SUSTAIN RIVER ECOSYSTEMS. , 2006, 16, 1311-1318.		935
41	RIPARIAN FOREST STAND DEVELOPMENT ALONG THE QUEETS RIVER IN OLYMPIC NATIONAL PARK, WASHINGTON. Ecological Monographs, 2006, 76, 277-298.	5.4	121
42	Perspective: The challenge of ecologically sustainable water management. Water Policy, 2006, 8, 475-479.	1.5	57
43	Formation, distribution and ecological consequences of flood-related wood debris piles in a bedrock confined river in semi-arid South Africa. River Research and Applications, 2006, 22, 1097-1110.	1.7	36
44	Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 2006, 81, 163.	10.4	5,448
45	Floodâ€deposited wood creates regeneration niches for riparian vegetation on a semiâ€arid South African river. Journal of Vegetation Science, 2006, 17, 615-624.	2.2	50
46	Dynamic patch mosaics and channel movement in an unconfined river valley of the Olympic Mountains. Freshwater Biology, 2006, 51, 523-544.	2.4	121
47	Keystone Interactions: Salmon and Bear in Riparian Forests of Alaska. Ecosystems, 2006, 9, 167-180.	3.4	240
48	Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna. Soil Biology and Biochemistry, 2006, 38, 1325-1333.	8.8	104
49	The influence of forest structure on riparian litterfall in a Pacific Coastal rain forest. Canadian Journal of Forest Research, 2006, 36, 2852-2863.	1.7	17
50	Flood-deposited wood creates regeneration niches for riparian vegetation on a semi-arid South African river. Journal of Vegetation Science, 2006, 17, 615.	2.2	4
51	RIPARIAN COMMUNITIES ASSOCIATED WITH PACIFIC NORTHWEST HEADWATER STREAMS: ASSEMBLAGES, PROCESSES, AND UNIQUENESS. Journal of the American Water Resources Association, 2005, 41, 935-947.	2.4	47
52	Flood-deposited wood debris and its contribution to heterogeneity and regeneration in a semi-arid riparian landscape. Oecologia, 2005, 145, 434-444.	2.0	54
53	Abundance and Production of Riparian Trees in the Lowland Floodplain of the Queets River, Washington. Ecosystems, 2005, 8, 841-861.	3.4	49
54	Effects of Salmon-Borne Nutrients on Riparian Soils and Vegetation in Southwest Alaska. Ecosystems, 2005, 8, 529-545.	3.4	72

#	Article	IF	CITATIONS
55	Origins, Patterns, and Importance of Heterogeneity in Riparian Systems. , 2005, , 279-309.		54
56	Aggregate measures of ecosystem services: can we take the pulse of nature?. Frontiers in Ecology and the Environment, 2005, 3, 56-59.	4.0	34
57	RIPARIAN COMMUNITIES ASSOCIATED WITH PACIFIC NORTHWEST HEADWATER STREAMS: ASSEMBLAGES, PROCESSES, AND UNIQUENESS. Journal of the American Water Resources Association, 2005, 41, 935-947.	2.4	67
58	Biotic versus hydrologic control over seasonal nitrate leaching in a floodplain forest. Biogeochemistry, 2003, 63, 53-72.	3.5	74
59	Potential Denitrification Activity in the Landscape of a Western Alaska Drainage Basin. Ecosystems, 2003, 6, 336-343.	3.4	50
60	Effects of Land Cover on Stream Ecosystems: Roles of Empirical Models and Scaling Issues. Ecosystems, 2003, 6, 407-423.	3.4	174
61	EFFECTS OF SALMON-DERIVED NITROGEN ON RIPARIAN FOREST GROWTH AND IMPLICATIONS FOR STREAM PRODUCTIVITY: REPLY. Ecology, 2003, 84, 3399-3401.	3.2	4
62	RECONSTRUCTING SALMON ABUNDANCE IN RIVERS: AN INITIAL DENDROCHRONOLOGICAL EVALUATION. Ecology, 2002, 83, 2971-2977.	3.2	26
63	Legitimizing Fluvial Ecosystems as Users of Water: An Overview. Environmental Management, 2002, 30, 455-467.	2.7	205
64	Basic Principles and Ecological Consequences of Changing Water Regimes on Nitrogen Cycling in Fluvial Systems. Environmental Management, 2002, 30, 481-491.	2.7	142
65	Salmon and alder as nitrogen sources to riparian forests in a boreal Alaskan watershed. Oecologia, 2002, 133, 573-582.	2.0	95
66	Pacific Salmon, Nutrients, and the Dynamics of Freshwater and Riparian Ecosystems. Ecosystems, 2002, 5, 399-417.	3.4	490
67	FOREST-RIVER INTERACTIONS: INFLUENCE ON HYPORHEIC DISSOLVED ORGANIC CARBON CONCENTRATIONS IN A FLOODPLAIN TERRACE. Journal of the American Water Resources Association, 2002, 38, 619-631.	2.4	31
68	WATER IN A CHANGING WORLD. , 2001, 11, 1027-1045.		709
69	EFFECTS OF SALMON-DERIVED NITROGEN ON RIPARIAN FOREST GROWTH AND IMPLICATIONS FOR STREAM PRODUCTIVITY. Ecology, 2001, 82, 2403-2409.	3.2	338
70	THE RESIDENCE TIME OF LARGE WOODY DEBRIS IN THE QUEETS RIVER, WASHINGTON, USA. , 2001, 11, 191-20	2.	153
71	Ecological Guidelines for Land Use and Management. , 2001, , 3-33.		4

#	Article	IF	CITATIONS
73	Effects of Salmon-Derived Nitrogen on Riparian Forest Growth and Implications for Stream Productivity. Ecology, 2001, 82, 2403.	3.2	24
74	A FUTURE PERSPECTIVE ON NORTH AMERICA'S FRESHWATER ECOSYSTEMS. , 2000, 10, 958-970.		141
75	Title is missing!. Hydrobiologia, 2000, 422/423, 111-131.	2.0	56
76	Vulnerability of riparian zones to invasion by exotic vascular plants. , 2000, 148, 105-114.		276
77	Riparian Ecology and Management in the Pacific Coastal Rain Forest. BioScience, 2000, 50, 996.	4.9	270
78	Stream channel configuration, landform, and riparian forest structure in the Cascade Mountains, Washington. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 699-707.	1.4	43
79	Indicators and assessment methods for measuring the ecological integrity of semi-aquatic terrestrial environments. , 2000, , 111-131.		9
80	Title is missing!. Hydrobiologia, 1999, 410, 79-86.	2.0	61
81	Microclimate in Forest Ecosystem and Landscape Ecology. BioScience, 1999, 49, 288-297.	4.9	728
82	Biophysical interactions and the structure and dynamics of riverine ecosystems: the importance of biotic feedbacks. , 1999, , 79-86.		1
83	Effects of stream size on bird community structure in coastal temperate forests of the Pacific Northwest, U.S.A Journal of Biogeography, 1998, 25, 773-782.	3.0	33
84	Spatial variation in environmental characteristics of Atlantic salmon (<i>Salmo salar</i>) rivers. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 267-280.	1.4	49
85	PLANT SPECIES RICHNESS IN RIPARIAN WETLANDS—A TEST OF BIODIVERSITY THEORY. Ecology, 1998, 79, 94-105.	3.2	144
86	Plant Species Richness in Riparian Wetlands–A Test of Biodiversity Theory. Ecology, 1998, 79, 94.	3.2	296
87	Proactive responses to human impacts that balance development and Atlantic salmon (Salmo salar) conservation: an integrative model. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 288-302.	1.4	7
88	River Ecology and Management in the Pacific Coastal Ecoregion. , 1998, , 1-10.		22
89	Riparian Forests. , 1998, , 289-323.		66
90	Watershed Management. , 1998, , 642-661.		4

#	Article	IF	CITATIONS
91	Biotic Stream Classification. , 1998, , 97-119.		17
92	HARVESTING EFFECTS ON MICROCLIMATIC GRADIENTS FROM SMALL STREAMS TO UPLANDS IN WESTERN WASHINGTON. , 1997, 7, 1188-1200.		214
93	Large Animals and System-Level Characteristics in River Corridors. BioScience, 1997, 47, 521-529.	4.9	197
94	EFFECTS OF CLIMATE CHANGE ON INLAND WATERS OF THE PACIFIC COASTAL MOUNTAINS AND WESTERN GREAT BASIN OF NORTH AMERICA. Hydrological Processes, 1997, 11, 971-992.	2.6	63
95	Where are We? Resources at the Brink. , 1997, , 1-10.		2
96	Watershed Management and Pacific Salmon: Desired Future Conditions. , 1997, , 447-474.		32
97	Water, society and landscape ecology. Landscape Ecology, 1996, 11, 193-196.	4.2	19
98	Invasibility of Species-Rich Communities in Riparian Zones. Conservation Biology, 1996, 10, 598-607.	4.7	450
99	Beaver as Engineers: Influences on Biotic and Abiotic Characteristics of Drainage Basins. , 1995, , 117-126.		61
100	Large woody debris, physical process, and riparian forest development in montane river networks of the Pacific Northwest. Geomorphology, 1995, 13, 133-144.	2.6	247
101	Freshwater Ecosystems and Their Management: A National Initiative. Science, 1995, 270, 584-585.	12.6	73
102	Large woody debris, physical process, and riparian forest development in montane river networks of the Pacific Northwest. , 1995, , 133-144.		3
103	Beaver Influences on the Long-Term Biogeochemical Characteristics of Boreal Forest Drainage Networks. Ecology, 1994, 75, 905-921.	3.2	214
104	A multi-scale assessment of the occurrence of exotic plants on the Olympic Peninsula, Washington. Journal of Vegetation Science, 1994, 5, 247-258.	2.2	170
105	Stream Channel Morphology and Woody Debris in Logged and Unlogged Basins of Western Washington. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51, 37-51.	1.4	166
106	The Role of Riparian Corridors in Maintaining Regional Biodiversity. , 1993, 3, 209-212.		1,172
107	Fundamental Elements of Ecologically Healthy Watersheds in the Pacific Northwest Coastal Ecoregion. , 1992, , 127-188.		76
108	Effects of Moose Browsing on Vegetation and Litter of the Boreal Forest, Isle Royale, Michigan, USA. Ecology, 1992, 73, 2059-2075.	3.2	271

#	Article	lF	CITATIONS
109	Selective Foraging and Ecosystem Processes in Boreal Forests. American Naturalist, 1992, 139, 690-705.	2.1	280
110	New Perspectives for Watershed Management: Balancing Long-Term Sustainability with Cumulative Environmental Change. , 1992, , 3-11.		9
111	Integrating Sustainable Development and Environmental Vitality: A Landscape Ecology Approach. , 1992, , 499-521.		24
112	Spatial and temporal fluctuations of dissolved organic carbon in subsurface flow of the Stillaguamish River (Washington, USA). Archiv FA¼r Hydrobiologie, 1992, 123, 401-412.	1.1	40
113	Beaver population fluctuations and tropospheric methane emissions in boreal wetlands. Biogeochemistry, 1991, 12, 1.	3.5	53
114	Landscape Boundaries in the Management and Restoration of Changing Environments: A Summary. , 1991, , 130-137.		6
115	Short-term hydrologic variations and nitrogen dynamics in beaver created meadows. Archiv Für Hydrobiologie, 1991, 123, 187-205.	1.1	26
116	Disturbance regimes, resilience, and recovery of animal communities and habitats in lotic ecosystems. Environmental Management, 1990, 14, 647-659.	2.7	184
117	The use of a geographic information system to analyze long-term landscape alteration by beaver. Landscape Ecology, 1990, 4, 5-19.	4.2	99
118	Aquatic Patch Creation in Relation to Beaver Population Trends. Ecology, 1990, 71, 1617-1621.	3.2	139
119	Browse selection by beaver: effects on riparian forest composition. Canadian Journal of Forest Research, 1990, 20, 1036-1043.	1.7	136
120	Predicting Beaver Colony Density in Boreal Landscapes. Journal of Wildlife Management, 1989, 53, 929.	1.8	34
121	Groundwater–Surface Water Relationships in Boreal Forest Watersheds: Dissolved Organic Carbon and Inorganic Nutrient Dynamics. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46, 41-49.	1.4	113
122	Daily rations, diel feeding activity and distribution of age-0 brook charr, Salvelinus fontinalis, in two subarctic streams. Environmental Biology of Fishes, 1988, 21, 195-205.	1.0	34
123	The Potential Importance of Boundaries of Fluvial Ecosystems. Journal of the North American Benthological Society, 1988, 7, 289-306.	3.1	270
124	Patch Dynamics in Lotic Systems: The Stream as a Mosaic. Journal of the North American Benthological Society, 1988, 7, 503-524.	3.1	522
125	Alteration of carbon cycling by beaver: methane evasion rates from boreal forest streams and rivers. Canadian Journal of Zoology, 1988, 66, 529-533.	1.0	62
126	Animal Influences on Ecosystem Dynamics. BioScience, 1988, 38, 750-752.	4.9	153

#	Article	IF	CITATIONS
127	Moose, Microbes, and the Boreal Forest. BioScience, 1988, 38, 770-777.	4.9	246
128	Alteration of North American Streams by Beaver. BioScience, 1988, 38, 753-762.	4.9	764
129	Longitudinal Patterns of Ecosystem Processes and Community Structure in a Subarctic River Continuum. Ecology, 1987, 68, 1139-1156.	3.2	259
130	Boundary dynamics at the aquatic-terrestrial interface: The influence of beaver and geomorphology. Landscape Ecology, 1987, 1, 47-57.	4.2	164
131	Structure and function of a benthic invertebrate stream community as influenced by beaver (Castor) Tj ETQq1 1	0.784314 2.0	rgBT_/Overlo
132	Ecosystem Alteation of Boreal Forest Streams by Beaver (Castor Canadensis). Ecology, 1986, 67, 1254-1269.	3.2	420
133	Nitrogen fixation in subarctic streams influenced by beaver (Castor canadensis). Hydrobiologia, 1985, 121, 193-202.	2.0	43
134	Physiological Smolt Characteristics of Anadromous and Non-anadromous Brook Trout (<i>Salvelinus) Tj ETQqO O Sciences, 1985, 42, 529-538.</i>	0 rgBT /O 1.4	verlock 10 Tf 75
135	The influence of beaver (<i>Castor canadensis</i>) on the production dynamics of aquatic insects. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1984, 22, 1801-1810.	0.1	13
136	Nitrogen budget of a subarctic stream altered by beaver (Castor canadensis). Oecologia, 1984, 62, 150-155.	2.0	130
137	Osmoregulation in the brook trout, Salvelinus fontinalis—II. Effects of size, age and photoperiod on seawater survival and ionic regulation. Comparative Biochemistry and Physiology A, Comparative Physiology, 1984, 79, 17-28.	0.6	81
138	Osmoregulation in the brook trout, Salvelinus fontinalis—I. Diel, photoperiod and growth related physiological changes in freshwater. Comparative Biochemistry and Physiology A, Comparative Physiology, 1984, 79, 7-16.	0.6	41
139	Particulate Allochthonous Inputs: Relationships with Stream Size in an Undisturbed Watershed. Canadian Journal of Fisheries and Aquatic Sciences, 1984, 41, 1473-1484.	1.4	101
140	Some determinants of maturation in brook trout, Salvelinus fontinalis. Aquaculture, 1984, 43, 269-278.	3.5	44
141	The influence of substrate quality and stream size on wood decomposition dynamics. Oecologia, 1983, 58, 281-285.	2.0	98
142	Spring migratory synchrony of salmonid, catostomid, and cyprinid fishes in Rivière à la Truite, Québec. Canadian Journal of Zoology, 1983, 61, 2495-2502.	1.0	35
143	The influence of stream size on the food quality of seston. Canadian Journal of Zoology, 1983, 61, 1995-2010.	1.0	34
144	The Annual Pattern and Spatial Distribution of Aquatic Oxygen Metabolism in Boreal Forest Watersheds. Ecological Monographs, 1983, 53, 73-94.	5.4	137

#	Article	IF	CITATIONS
145	A geomorphic approach for examining the role of periphyton in large watersheds. , 1983, , 191-198.		15
146	Characteristics of Sediment and Organic Carbon Export from Pristine Boreal Forest Watersheds. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39, 1699-1718.	1.4	123
147	Stream ecosystem research in a watershed perspective. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1981, 21, 804-811.	0.1	3
148	Relationships Between Metabolic Parameters and Stream Order in Oregon. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37, 834-847.	1.4	106
149	Transport of nutrients and carbon from the Nanaimo River to its estuary 1. Limnology and Oceanography, 1978, 23, 1183-1193.	3.1	61
150	Primary production, standing stock, and export of organic matter in a Mohave Desert thermal stream1. Limnology and Oceanography, 1976, 21, 60-73.	3.1	52
151	Productivity of a herbivorous pupfish population (Cyprinodon nevadensis) in a warm desert stream. Journal of Fish Biology, 1976, 9, 125-137.	1.6	36
152	Food Habits of the Amargosa Pupfish in a Thermal Stream. Transactions of the American Fisheries Society, 1975, 104, 536-538.	1.4	12