GÃ;bor Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11680078/publications.pdf

Version: 2024-02-01

		623574	752573
22	1,628	14	20
papers	citations	h-index	g-index
23	23	23	1855
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Perisomatic Inhibition and Its Relation to Epilepsy and to Synchrony Generation in the Human Neocortex. International Journal of Molecular Sciences, 2022, 23, 202.	1.8	3
2	Stereotactic Radiosurgery of Cavernous Malformations. , 2020, , 165-190.		0
3	Contemporary radiosurgery of cerebral cavernous malformations: Part 1. Treatment outcome for critically located hemorrhagic lesions. Journal of Neurosurgery, 2019, 130, 1817-1825.	0.9	15
4	Contemporary radiosurgery of cerebral cavernous malformations: Part 2. Treatment outcome for hemispheric lesions. Journal of Neurosurgery, 2019, 130, 1826-1834.	0.9	11
5	Presence of synchronyâ€generating hubs in the human epileptic neocortex. Journal of Physiology, 2019, 597, 5639-5670.	1.3	10
6	Hyperexcitability of the network contributes to synchronization processes in the human epileptic neocortex. Journal of Physiology, 2018, 596, 317-342.	1.3	35
7	Repeat Radiosurgery Treatment After Cavernous Malformation Radiosurgery. World Neurosurgery, 2018, 118, e296-e303.	0.7	3
8	Staged-Volume Radiosurgery of Large Arteriovenous Malformations Improves Outcome by Reducing the Rate of Adverse Radiation Effects. Neurosurgery, 2017, 80, 180-192.	0.6	41
9	Treatment of AVM: Stereotactic Radiosurgery. , 2017, , 149-171.		1
10	The Quest for Predictors of Seizure Improvement Following Arteriovenous Malformation Radiosurgery. World Neurosurgery, 2016, 89, 699-700.	0.7	0
11	Stereotactic Radiosurgery of Intracranial Cavernous Malformations. Neurosurgery Clinics of North America, 2013, 24, 575-589.	0.8	13
12	Stereotactic Radiosurgery for Arteriovenous Malformations Located in Deep Critical Regions. Neurosurgery, 2012, 70, 1458-1471.	0.6	38
13	A historical analysis of single-stage gamma knife radiosurgical treatment for large arteriovenous malformations: evolution and outcomes. Acta Neurochirurgica, 2012, 154, 383-394.	0.9	31
14	Stereotactic radiosurgery for deep-seated cavernous malformations: a move toward more active, early intervention. Journal of Neurosurgery, 2010, 113, 691-699.	0.9	75
15	The SNAP-25 Linker as an Adaptation Toward Fast Exocytosis. Molecular Biology of the Cell, 2008, 19, 3769-3781.	0.9	32
16	Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO Journal, 2006, 25, 955-966.	3.5	251
17	Different Effects on Fast Exocytosis Induced by Synaptotagmin 1 and 2 Isoforms and Abundance But Not by Phosphorylation. Journal of Neuroscience, 2006, 26, 632-643.	1.7	108
18	Plasmalemmal Phosphatidylinositol-4,5-Bisphosphate Level Regulates the Releasable Vesicle Pool Size in Chromaffin Cells. Journal of Neuroscience, 2005, 25, 2557-2565.	1.7	208

#	Article	IF	CITATIONS
19	Alternative Splicing of SNAP-25 Regulates Secretion through Nonconservative Substitutions in the SNARE Domain. Molecular Biology of the Cell, 2005, 16, 5675-5685.	0.9	61
20	Regulation of Releasable Vesicle Pool Sizes by Protein Kinase A-Dependent Phosphorylation of SNAP-25. Neuron, 2004, 41, 417-429.	3.8	204
21	Differential Control of the Releasable Vesicle Pools by SNAP-25 Splice Variants and SNAP-23. Cell, 2003, 114, 75-86.	13.5	316
22	Protein Kinase C-Dependent Phosphorylation of Synaptosome-Associated Protein of 25 kDa at Ser ¹⁸⁷ Potentiates Vesicle Recruitment. Journal of Neuroscience, 2002, 22, 9278-9286.	1.7	167