Jianxun Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11679578/publications.pdf Version: 2024-02-01

IMNXUN SONG

#	Article	IF	CITATIONS
1	Live attenuated bacterium limits cancer resistance to CAR-T therapy by remodeling the tumor microenvironment. , 2022, 10, e003760.		15
2	Elongation factor-2 kinase is a critical determinant of the fate and antitumor immunity of CD8 ⁺ T cells. Science Advances, 2022, 8, eabl9783.	4.7	2
3	NAC1 modulates autoimmunity by suppressing regulatory T cell–mediated tolerance. Science Advances, 2022, 8, .	4.7	13
4	Autophagy in Tâ€cell differentiation, survival and memory. Immunology and Cell Biology, 2021, 99, 351-360.	1.0	17
5	Current development in iPSC-based therapy for autoimmune diseases. , 2021, , 315-338.		1
6	Metabolic Reprogramming and Reactive Oxygen Species in T Cell Immunity. Frontiers in Immunology, 2021, 12, 652687.	2.2	54
7	An optimized protocol for the generation of HBV viral antigen-specific T lymphocytes from pluripotent stem cells. STAR Protocols, 2021, 2, 100264.	0.5	1
8	Stem Cell-Derived Viral Antigen-Specific T Cells Suppress HIV Replication and PD-1 Expression on CD4+ T Cells. Viruses, 2021, 13, 753.	1.5	4
9	Insights Into the Pathologic Roles and Regulation of Eukaryotic Elongation Factor-2 Kinase. Frontiers in Molecular Biosciences, 2021, 8, 727863.	1.6	16
10	Stem Cell-Derived Viral Antigen-Specific T Cells Suppress HBV Replication through Production of IFN-Î ³ and TNF-âª. IScience, 2020, 23, 101333.	1.9	3
11	Development of CAR-T Cell Persistence in Adoptive Immunotherapy of Solid Tumors. Frontiers in Oncology, 2020, 10, 574860.	1.3	13
12	Stem Cell-Derived Viral Ag-Specific T Lymphocytes Suppress HBV Replication in Mice. Journal of Visualized Experiments, 2019, , .	0.2	0
13	Targeting Stem Cell-Derived Tissue-Associated Regulatory T Cells for Type 1 Diabetes Immunotherapy. Current Diabetes Reports, 2019, 19, 89.	1.7	8
14	Identification of a small-molecule compound that inhibits homodimerization of oncogenic NAC1 protein and sensitizes cancer cells to anticancer agents. Journal of Biological Chemistry, 2019, 294, 10006-10017.	1.6	15
15	Generation of Tumor Antigen-Specific Cytotoxic T Lymphocytes from Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 1884, 43-55.	0.4	3
16	In Vitro Differentiation of T Cells from Murine Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2048, 131-141.	0.4	1
17	Stem cell–derived tissue-associated regulatory T cells suppress the activity of pathogenic cells in autoimmune diabetes. JCI Insight, 2019, 4, .	2.3	19
18	Protective Cancer Vaccine Using Genetically Modified Hematopoietic Stem Cells. Vaccines, 2018, 6, 40.	2.1	1

JIANXUN SONG

#	Article	IF	CITATIONS
19	Adoptive Cell Transfer: Is it a Promising Immunotherapy for Colorectal Cancer?. Theranostics, 2018, 8, 5784-5800.	4.6	42
20	The endoplasmic reticulum–resident E3 ubiquitin ligase Hrd1 controls a critical checkpoint in B cell development in mice. Journal of Biological Chemistry, 2018, 293, 12934-12944.	1.6	25
21	The Histone Acetyltransferase Gcn5 Positively Regulates T Cell Activation. Journal of Immunology, 2017, 198, 3927-3938.	0.4	32
22	Development and characterization of naive single-type tumor antigen-specific CD8 ⁺ T lymphocytes from murine pluripotent stem cells. Oncolmmunology, 2017, 6, e1334027.	2.1	4
23	Immunotherapy for triple-negative breast cancer: Existing challenges and exciting prospects. Drug Resistance Updates, 2017, 32, 1-15.	6.5	132
24	Immunotherapy in Autoimmune Diabetes. , 2017, , .		1
25	Hepatitis B Virus Immunopathology, Model Systems, and Current Therapies. Frontiers in Immunology, 2017, 8, 436.	2.2	19
26	câ€Mycâ€InducedÂSurvivinÂlsÂEssentialÂforÂPromoting theÂNotchâ€ĐependentÂTÂCellÂDifferentiationÂfrom HematopoieticÂStemÂCells. Genes, 2017, 8, 97.	Â _{1.0}	17
27	Development of Auto Antigen-specific Regulatory T Cells for Diabetes Immunotherapy. Immune Network, 2016, 16, 281.	1.6	8
28	Melanoma Immunotherapy in Mice Using Genetically Engineered Pluripotent Stem Cells. Cell Transplantation, 2016, 25, 811-827.	1.2	12
29	Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10394-10399.	3.3	38
30	C-Myc regulation by costimulatory signals modulates the generation of CD8 ⁺ memory T cells during viral infection. Open Biology, 2016, 6, 150208.	1.5	25
31	The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nature Communications, 2016, 7, 12073.	5.8	48
32	Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Scientific Reports, 2016, 6, 20588.	1.6	34
33	Development of Stem Cell-derived Antigen-specific Regulatory T Cells Against Autoimmunity. Journal of Visualized Experiments, 2016, , .	0.2	2
34	Impact of Pulsatile Flow on Vital Organ Recovery During Cardiopulmonary Bypass in Neonates and Infants. Artificial Organs, 2016, 40, 14-18.	1.0	4
35	Stem Cell-Derived Regulatory T Cells for Therapeutic Use in Arthritis. Autoimmune and Infectious Diseases: Open Access, 2016, 2, .	0.1	0
36	<scp>A</scp> polipoprotein <scp>E</scp> Levels in Pediatric Patients Undergoing Cardiopulmonary Bypass. Artificial Organs, 2015, 39, 28-33.	1.0	14

JIANXUN SONG

#	Article	IF	CITATIONS
37	Utilizing Regulatory T Cells Against Rheumatoid Arthritis. Frontiers in Oncology, 2014, 4, 209.	1.3	43
38	Telbivudine treatment corrects HBV-induced epigenetic alterations in liver cells of patients with chronic hepatitis B. Carcinogenesis, 2014, 35, 53-61.	1.3	13
39	Comparative Effects of Pulsatile and Nonpulsatile Flow on Plasma Fibrinolytic Balance in Pediatric Patients Undergoing Cardiopulmonary Bypass. Artificial Organs, 2014, 38, 28-33.	1.0	21
40	Modulation of Autoimmune Diseases by iPS Cells. Methods in Molecular Biology, 2014, 1213, 365-377.	0.4	2
41	The Serine-threonine Kinase Inositol-requiring Enzyme 1α (IRE1α) Promotes IL-4 Production in T Helper Cells. Journal of Biological Chemistry, 2013, 288, 33272-33282.	1.6	48
42	Generation of Antigen-Specific T Lymphocytes from Induced Pluripotent Stem Cells for Adoptive Immunotherapy. , 2013, , 105-121.		0
43	Transgenic expression of survivin compensates for <scp>OX</scp> 40â€deficiency in driving <scp>T</scp> h2 development and allergic inflammation. European Journal of Immunology, 2013, 43, 1914-1924.	1.6	13
44	Regulation of A1 by OX40 Contributes to CD8+ T Cell Survival and Anti-Tumor Activity. PLoS ONE, 2013, 8, e70635.	1.1	17
45	USP22 Antagonizes p53 Transcriptional Activation by Deubiquitinating Sirt1 to Suppress Cell Apoptosis and Is Required for Mouse Embryonic Development. Molecular Cell, 2012, 46, 484-494.	4.5	264
46	Directed Differentiation of Induced Pluripotent Stem Cells towards T Lymphocytes. Journal of Visualized Experiments, 2012, , e3986.	0.2	16
47	Programming of Regulatory T Cells from Pluripotent Stem Cells and Prevention of Autoimmunity. Journal of Immunology, 2012, 189, 1228-1236.	0.4	66
48	Global Mapping of H3K4me1 and H3K4me3 Reveals the Chromatin State-Based Cell Type-Specific Gene Regulation in Human Treg Cells. PLoS ONE, 2011, 6, e27770.	1.1	32
49	<i>In Vivo</i> Programming of Tumor Antigen-Specific T Lymphocytes from Pluripotent Stem Cells to Promote Cancer Immunosurveillance. Cancer Research, 2011, 71, 4742-4747.	0.4	54
50	FoxP3 and Bcl-xL cooperatively promote regulatory T cell persistence and prevention of arthritis development. Arthritis Research and Therapy, 2010, 12, R66.	1.6	27
51	Cooperation between Molecular Targets of Costimulation in Promoting T Cell Persistence and Tumor Regression. Journal of Immunology, 2009, 182, 6744-6752.	0.4	17
52	T lineage differentiation from induced pluripotent stem cells. Cellular Immunology, 2009, 260, 1-5.	1.4	52
53	Intracellular Signals of T Cell Costimulation. Cellular and Molecular Immunology, 2008, 5, 239-247.	4.8	55
54	Activation of NF-κB1 by OX40 Contributes to Antigen-Driven T Cell Expansion and Survival. Journal of Immunology, 2008, 180, 7240-7248.	0.4	110

JIANXUN SONG

#	Article	IF	CITATIONS
55	Cooperation between CD4 and CD8 T cells for anti-tumor activity is enhanced by OX40 signals. European Journal of Immunology, 2007, 37, 1224-1232.	1.6	46
56	The kinases aurora B and mTOR regulate the G1–S cell cycle progression of T lymphocytes. Nature Immunology, 2007, 8, 64-73.	7.0	125
57	Signals from OX40 regulate nuclear factor of activated T cells c1 and T cell helper 2 lineage commitment. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3740-3745.	3.3	106
58	Protein Kinase C-Î, Is an Early Survival Factor Required for Differentiation of Effector CD8+ T Cells. Journal of Immunology, 2005, 175, 5126-5134.	0.4	59
59	Sustained Survivin Expression from OX40 Costimulatory Signals Drives T Cell Clonal Expansion. Immunity, 2005, 22, 621-631.	6.6	217
60	The costimulation-regulated duration of PKB activation controls T cell longevity. Nature Immunology, 2004, 5, 150-158.	7.0	178
61	OX40 (CD134) Controls Memory T Helper 2 Cells that Drive Lung Inflammation. Journal of Experimental Medicine, 2003, 198, 315-324.	4.2	226
62	OX40 Promotes Bcl-xL and Bcl-2 Expression and Is Essential for Long-Term Survival of CD4 T Cells. Immunity, 2001, 15, 445-455.	6.6	584
63	Stem Cell-Based Cellular Therapy in Rheumatoid Arthritis. , 0, , .		0
64	Stem Cell-Derived Regulatory T Cells for Therapeutic Use. , 0, , .		0