Jung Gyu Nam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1167894/publications.pdf

Version: 2024-02-01

	840776 888059		888059
17	478	11	17
papers	citations	h-index	g-index
17	17	17	927
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Homogeneous <scp>Na</scp> incorporation for industrialâ€scale application of <scp>Cu</scp> (<scp>ln</scp> , <scp>Ga</scp>)(<scp>Se</scp> , <scp>S</scp>) ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26, 112-126.	8.1	5
2	High photo-conversion efficiency in double-graded Cu(In,Ga)(S,Se) ₂ thin film solar cells with two-step sulfurization post-treatment. Progress in Photovoltaics: Research and Applications, 2017, 25, 139-148.	8.1	14
3	Achievement of 17.9% efficiency in 30 × 30 cm2 Cu(In,Ga)(Se,S)2 solar cell sub-module by sulfuri after selenization with Cd-free buffer. Progress in Photovoltaics: Research and Applications, 2016, 24, 175-182.	zation 8.1	23
4	Investigation of damage caused by partial shading of CulnxGa _(1-x) Se ₂ photovoltaic modules with bypass diodes. Progress in Photovoltaics: Research and Applications, 2016, 24, 1035-1043.	8.1	38
5	Defect visualization of Cu(InGa)(SeS)2 thin films using DLTS measurement. Scientific Reports, 2016, 6, 30554.	3.3	22
6	Effects of the Cu/(Ga+In) ratio on the bulk and interface properties of Cu(InGa)(SSe)2 solar cells. Solar Energy Materials and Solar Cells, 2016, 149, 195-203.	6.2	18
7	Investigation of the light soaking behaviors in two-step sputter and selenization Cu(In,Ga)(Se,S)2 solar cells with different sulfur ratios. Solar Energy Materials and Solar Cells, 2016, 144, 467-471.	6.2	8
8	The oxidation effect of a Mo back contact on Cu(In,Ga)(Se,S) thin-film solar modules. Solar Energy Materials and Solar Cells, 2016, 144, 445-450.	6.2	6
9	Enhancement of the photo conversion efficiencies in Cu(In,Ga)(Se,S)2 solar cells fabricated by two-step sulfurization process. Applied Physics Letters, 2015, 107, .	3.3	8
10	Effect of various encapsulants for frameless glass to glass Cu(In,Ga)(Se,S) ₂ photovoltaic module. RSC Advances, 2015, 5, 51258-51262.	3.6	15
11	Influence of surface properties on the performance of Cu(In,Ga)(Se,S) ₂ thin-film solar cells using Kelvin probe force microscopy. RSC Advances, 2015, 5, 40719-40725.	3.6	12
12	Direct evidence of void passivation in Cu(InGa)(SSe)2 absorber layers. Applied Physics Letters, 2015, 106,	3.3	11
13	Comparison of Cu2ZnSnS4 thin films and solar cell performance using Zn target with ZnS target. Journal of Alloys and Compounds, 2015, 650, 641-646.	5.5	14
14	Direct band gap measurement of Cu(In,Ga)(Se,S)2 thin films using high-resolution reflection electron energy loss spectroscopy. Applied Physics Letters, 2015, 106, .	3.3	2
15	Research on decrease of cell to module loss for crystalline silicon photovoltaic module. Journal of Renewable and Sustainable Energy, 2013, 5, 052003.	2.0	10
16	Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode. Scripta Materialia, 2010, 62, 148-150.	5.2	198
17	Synthesis of shape-controlled \hat{l}^2 -ln2S3 nanotubes through oriented attachment of nanoparticles. Chemical Communications, 2010, 46, 2292.	4.1	74