Wei-min Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/116785/publications.pdf

Version: 2024-02-01

144 papers 12,143 citations

20817 60 h-index 27406 106 g-index

149 all docs 149 docs citations

149 times ranked 10014 citing authors

#	Article	IF	CITATIONS
1	Impacts of physical-chemical property of polyethylene on depolymerization and biodegradation in yellow and dark mealworms with high purity microplastics. Science of the Total Environment, 2022, 828, 154458.	8.0	32
2	Nanoplastic stimulates metalloid leaching from historically contaminated soil via indirect displacement. Water Research, 2022, 218, 118468.	11.3	15
3	Biodegradation of polystyrene and low-density polyethylene by Zophobas atratus larvae: Fragmentation into microplastics, gut microbiota shift, and microbial functional enzymes. Journal of Cleaner Production, 2022, 367, 132987.	9.3	31
4	Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. Journal of Hazardous Materials, 2021, 401, 123415.	12.4	325
5	Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 2021, 262, 127818.	8.2	103
6	Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas) Tj ETQq0 144087.	0 0 rgBT / 8.0	Overlock 10 ⁻ 107
7	Enhanced Bioavailability and Microbial Biodegradation of Polystyrene in an Enrichment Derived from the Gut Microbiome of <i>Tenebrio molitor</i> (Mealworm Larvae). Environmental Science & Emp; Technology, 2021, 55, 2027-2036.	10.0	76
8	Modeling the Conditional Fragmentation-Induced Microplastic Distribution. Environmental Science & Envi	10.0	44
9	Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation. Journal of Hazardous Materials, 2021, 416, 126222.	12.4	54
10	Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: A sustainable approach for waste management. Journal of Hazardous Materials, 2021, 416, 125803.	12.4	57
11	Vertical migration of microplastics in porous media: Multiple controlling factors under wet-dry cycling. Journal of Hazardous Materials, 2021, 419, 126413.	12.4	55
12	Confirmation of biodegradation of low-density polyethylene in dark-versus yellow-mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. Science of the Total Environment, 2021, 789, 147915.	8.0	39
13	Enhancing nutrient recovery from fish sludge using a modified biological aerated filter with sponge media with extended filtration in aquaponics. Journal of Cleaner Production, 2021, 320, 128804.	9.3	5
14	Characterization of biodegradation of plastics in insect larvae. Methods in Enzymology, 2021, 648, 95-120.	1.0	38
15	Fate of Hexabromocyclododecane (HBCD), A Common Flame Retardant, In Polystyrene-Degrading Mealworms: Elevated HBCD Levels in Egested Polymer but No Bioaccumulation. Environmental Science & amp; Technology, 2020, 54, 364-371.	10.0	27
16	Prevalence of microplastics in animal-based traditional medicinal materials: Widespread pollution in terrestrial environments. Science of the Total Environment, 2020, 709, 136214.	8.0	49
17	Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environment International, 2020, 145, 106106.	10.0	129
18	Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica. Science of the Total Environment, 2020, 746, 141289.	8.0	122

#	Article	IF	CITATIONS
19	Recovery of nutrients from fish sludge in an aquaponic system using biological aerated filters with ceramsite plus lignocellulosic material media. Journal of Cleaner Production, 2020, 258, 120886.	9.3	21
20	Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 2020, 266, 115206.	7.5	98
21	Biodegradation of Plastics in Tenebrio Genus (Mealworms). Handbook of Environmental Chemistry, 2020, , 385-422.	0.4	9
22	Supplementing resuscitation-promoting factor (Rpf) enhanced biodegradation of polychlorinated biphenyls (PCBs) by Rhodococcus biphenylivorans strain TG9T. Environmental Pollution, 2020, 263, 114488.	7.5	44
23	Uranium sequestration in sediment at an iron-rich contaminated site at Oak Ridge, Tennessee via. bioreduction followed by reoxidation. Journal of Environmental Sciences, 2019, 85, 156-167.	6.1	10
24	A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 61
	Pollution, 2019, 252, 1142-1153.		
25	Biodegradation of Polystyrene by Dark (<i>Tenebrio obscurus</i>) and Yellow (<i>Tenebrio) Tj ETQq1 1 0.784314 53, 5256-5265.</i>	rgBT /Ove 10.0	erlock 10 Tf 201
26	Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environmental Pollution, 2019, 249, 527-534.	7.5	287
27	Generation of high-efficient biochar for dye adsorption using frass of yellow mealworms (larvae of) Tj ETQq1 1 0.7 Production, 2019, 227, 33-47.	84314 rgE 9.3	3T /Overlock 78
28	Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. Journal of Cleaner Production, 2019, 225, 579-586.	9.3	322
29	Performance of a pilot-scale aquaponics system using hydroponics and immobilized biofilm treatment for water quality control. Journal of Cleaner Production, 2019, 208, 274-284.	9.3	37
30	Complex Mechanism of Phenol Extraction of Coal Gasification Wastewater. Polish Journal of Environmental Studies, 2019, 28, 1105-1113.	1.2	8
31	Bacterial Community Shift and Coexisting/Coexcluding Patterns Revealed by Network Analysis in a Uranium-Contaminated Site after Bioreduction Followed by Reoxidation. Applied and Environmental Microbiology, 2018, 84, .	3.1	37
32	Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 2018, 191, 979-989.	8.2	168
33	Pollution control and in situ bioremediation for lake aquaculture using an ecological dam. Journal of Cleaner Production, 2018, 172, 2256-2265.	9.3	45
34	Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of <i>Tenebrio) Tj ETQq0 0 0 rgBT /Ove</i>	erlock 10 1 10.0	Tf 50 147 To 316
35	Progresses in Polystyrene Biodegradation and Prospects for Solutions to Plastic Waste Pollution. IOP Conference Series: Earth and Environmental Science, 2018, 150, 012005.	0.3	17
36	Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 2018, 212, 262-271.	8.2	130

#	Article	IF	Citations
37	A high-efficiency denitrification bioreactor for the treatment of acrylonitrile wastewater using waterborne polyurethane immobilized activated sludge. Bioresource Technology, 2017, 239, 472-481.	9.6	45
38	Microplastics pollution and reduction strategies. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	180
39	Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities. Scientific Reports, 2016, 6, 19600.	3.3	29
40	Microbial community dynamics in an anaerobic biofilm reactor treating heavy oil refinery wastewater. RSC Advances, 2016, 6, 107442-107451.	3.6	9
41	Improving of lipid productivity of the biodiesel promising green microalga Chlorella pyrenoidosa via low-energy ion implantation. Journal of Applied Phycology, 2016, 28, 2159-2166.	2.8	37
42	Ultrasonic Treatment Enhanced Ammonia-Oxidizing Bacterial (AOB) Activity for Nitritation Process. Environmental Science & Envi	10.0	56
43	Highly efficient Gab2 siRNA delivery to ovarian cancer cells mediated by chitosan–polyethyleneimine nanoparticles. Journal of Materials Chemistry B, 2016, 4, 273-281.	5.8	15
44	Synergistic effect using vermiculite as media with a bacterial biofilm of Arthrobacter sp. for biodegradation of di-(2-ethylhexyl) phthalate. Journal of Hazardous Materials, 2016, 304, 118-125.	12.4	33
45	A field pilot-scale study of biological treatment of heavy oil-produced water by biological filter with airlift aeration and hydrolytic acidification system. Environmental Science and Pollution Research, 2016, 23, 4919-4930.	5. 3	12
46	Phosphorus Fractions and Phosphorus Adsorption Characteristics of Soils from the Water-Level Fluctuating Zone of Nansi Lake, China. Polish Journal of Environmental Studies, 2016, 25, 865-872.	1,2	6
47	Characterization of the enhancement of zero valent iron on microbial azo reduction. BMC Microbiology, 2015, 15, 85.	3.3	19
48	Stimulation of oxygen to bioanode for energy recovery from recalcitrant organic matter aniline inÂmicrobial fuel cells (MFCs). Water Research, 2015, 81, 72-83.	11.3	76
49	High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater. Genome Announcements, 2015, 3, .	0.8	3
50	Electron Acceptor-Dependent Respiratory and Physiological Stratifications in Biofilms. Environmental Science & Environmental S	10.0	47
51	Complete genome sequence of Bacillus sp. YP1, a polyethylene-degrading bacterium from waxworm's gut. Journal of Biotechnology, 2015, 200, 77-78.	3.8	51
52	Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained <i>In Situ</i> U(VI) Reduction. Applied and Environmental Microbiology, 2015, 81, 4164-4172.	3.1	24
53	Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science & Emp; Technology, 2015, 49, 12080-12086.	10.0	405
54	Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environmental Science & Environmenta	10.0	426

#	Article	IF	CITATIONS
55	Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment as shown by stable isotope probing. Frontiers of Environmental Science and Engineering, 2015, 9, 453-464.	6.0	22
56	Biofuel production from microalgae as feedstock: current status and potential. Critical Reviews in Biotechnology, 2015, 35, 255-268.	9.0	66
57	Modified pretreatment method for total microbial DNA extraction from contaminated river sediment. Frontiers of Environmental Science and Engineering, 2015, 9, 444-452.	6.0	21
58	Polycyclic Aromatic Hydrocarbon Accumulation in Phragmites australis Grown on Constructed Wetland for Sludge Stabilization. Journal of Residuals Science and Technology, 2015, 12, 215-220.	0.6	9
59	Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems. Bioresource Technology, 2014, 164, 270-275.	9.6	40
60	Biodegradation and kinetic analysis of phthalates by an Arthrobacter strain isolated from constructed wetland soil. Applied Microbiology and Biotechnology, 2014, 98, 4683-4690.	3.6	74
61	Integrated anaerobic fluidized-bed membrane bioreactor for domestic wastewater treatment. Chemical Engineering Journal, 2014, 240, 362-368.	12.7	81
62	Evidence of Polyethylene Biodegradation by Bacterial Strains from the Guts of Plastic-Eating Waxworms. Environmental Science &	10.0	646
63	Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong. Journal of Applied Microbiology, 2014, 116, 464-476.	3.1	54
64	Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. Journal of Hazardous Materials, 2014, 264, 1-7.	12.4	104
65	Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR–BES): A design suitable for scaling-up. Bioresource Technology, 2014, 163, 254-261.	9.6	81
66	Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells. Bioresource Technology, 2014, 167, 124-132.	9.6	120
67	Surge block method for controlling well clogging and sampling sediment during bioremediation. Water Research, 2013, 47, 6566-6573.	11.3	8
68	Methanogenesis Facilitated by Geobiochemical Iron Cycle in a Novel Syntrophic Methanogenic Microbial Community. Environmental Science & Environmental Science & 2013, 47, 10078-10084.	10.0	78
69	U(VI) Bioreduction with Emulsified Vegetable Oil as the Electron Donor – Model Application to a Field Test. Environmental Science & Technology, 2013, 47, 3218-3225.	10.0	31
70	Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery. Bioresource Technology, 2013, 144, 44-49.	9.6	30
71	Accelerated Reduction of Chlorinated Nitroaromatic Antibiotic Chloramphenicol by Biocathode. Environmental Science & Environme	10.0	230
72	In Situ Bioremediation of Uranium with Emulsified Vegetable Oil as the Electron Donor. Environmental Science & Donor, Technology, 2013, 47, 6440-6448.	10.0	81

#	Article	IF	CITATIONS
73	Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. Water Research, 2013, 47, 4207-4216.	11.3	175
74	Enhanced methane production from Taihu Lake blue algae by anaerobic co-digestion with corn straw in continuous feed digesters. Bioresource Technology, 2013, 134, 264-270.	9.6	72
75	U(VI) Bioreduction with Emulsified Vegetable Oil as the Electron Donor – Microcosm Tests and Model Development. Environmental Science & Technology, 2013, 47, 3209-3217.	10.0	26
76	Sustainable nitrification in fluidised bed reactor with immobilised sludge pellets. Water S A, 2013, 39, .	0.4	4
77	Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment. Scientific Reports, 2013, 3, 3550.	3.3	116
78	Bioelectrochemical recovery of ammonia–copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere, 2012, 89, 1177-1182.	8.2	73
79	Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate. Journal of Hazardous Materials, 2012, 227-228, 453-460.	12.4	24
80	Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Frontiers of Environmental Science and Engineering, 2012, 6, 569-574.	6.0	64
81	Impact of reactor configuration on anammox process start-up: MBR versus SBR. Bioresource Technology, 2012, 104, 73-80.	9.6	111
82	Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors. Bioresource Technology, 2012, 111, 92-97.	9.6	116
83	A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction. Journal of Hazardous Materials, 2012, 199-200, 401-409.	12.4	52
84	Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Critical Reviews in Biotechnology, 2011, 31, 137-152.	9.0	241
85	Reduction of Uranium(VI) by Soluble Iron(II) Conforms with Thermodynamic Predictions. Environmental Science & Environmental Sc	10.0	70
86	Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework. Ground Water, 2011, 49, 209-218.	1.3	6
87	Selection of functional consortium for crude oil-contaminated soil remediation. International Biodeterioration and Biodegradation, 2011, 65, 1244-1248.	3.9	74
88	Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresource Technology, 2011, 102, 9919-9926.	9.6	60
89	Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor. Bioresource Technology, 2011, 102, 10334-10339.	9.6	58
90	Comparison of biological removal via nitrite with real-time control using aerobic granular sludge and flocculent activated sludge. Applied Microbiology and Biotechnology, 2011, 89, 1645-1652.	3.6	27

#	Article	IF	Citations
91	Comparison of four enhancement strategies for aerobic granulation in sequencing batch reactors. Journal of Hazardous Materials, 2011, 186, 320-327.	12.4	88
92	Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. Journal of Hazardous Materials, 2011, 189, 186-192.	12.4	200
93	Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresource Technology, 2011, 102, 4137-4143.	9.6	263
94	A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation. Bioresource Technology, 2011, 102, 4774-4778.	9.6	87
95	Dynamics of Microbial Community Composition and Function duringln SituBioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 5063-5063.	3.1	4
96	A Limited Microbial Consortium Is Responsible for Extended Bioreduction of Uranium in a Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 5955-5965.	3.1	108
97	Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 3860-3869.	3.1	51
98	Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests. Journal of Contaminant Hydrology, 2010, 117, 37-45.	3.3	4
99	Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions. Journal of Hazardous Materials, 2010, 183, 482-489.	12.4	19
100	Membrane fouling in an anaerobic membrane bioreactor: Differences in relative abundance of bacterial species in the membrane foulant layer and in suspension. Journal of Membrane Science, 2010, 364, 331-338.	8.2	170
101	A rapid selection strategy for an anodophilic consortium for microbial fuel cells. Bioresource Technology, 2010, 101, 5733-5735.	9.6	66
102	Responses of microbial community functional structures to pilot-scale uranium <i>in situ</i> bioremediation. ISME Journal, 2010, 4, 1060-1070.	9.8	98
103	Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach. Applied and Environmental Microbiology, 2010, 76, 6778-6786.	3.1	102
104	A critical review of the application of white rot fungus to environmental pollution control. Critical Reviews in Biotechnology, 2010, 30, 70-77.	9.0	179
105	Effects of Nitrate on the Stability of Uranium in a Bioreduced Region of the Subsurface. Environmental Science & Environmental	10.0	100
106	Kinetic Model for Biological Nitrogen Removal Using Shortcut Nitrification-Denitrification Process in Sequencing Batch Reactor. Environmental Science & Environmental Science & 2010, 44, 5015-5021.	10.0	52
107	Uranium Transformations in Static Microcosms. Environmental Science & Environm	10.0	44
108	Bacterial community succession during <i>in situ</i> uranium bioremediation: spatial similarities along controlled flow paths. ISME Journal, 2009, 3, 47-64.	9.8	90

#	Article	IF	Citations
109	GeoChipâ€based analysis of functional microbial communities during the reoxidation of a bioreduced uraniumâ€contaminated aquifer. Environmental Microbiology, 2009, 11, 2611-2626.	3.8	95
110	Long-term performance of co-metabolic degradation of trichloroethylene in a fluidized bed reactor fed with benzene, toluene and xylene. Journal of Chemical Technology and Biotechnology, 2008, 83, 513-523.	3.2	13
111	Estimating first-order reaction rate coefficient for transport with nonequilibrium linear mass transfer in heterogeneous media. Journal of Contaminant Hydrology, 2008, 98, 50-60.	3.3	6
112	Speciation of Uranium in Sediments before and after In situ Biostimulation. Environmental Science & En	10.0	107
113	Microbial Communities in Contaminated Sediments, Associated with Bioremediation of Uranium to Submicromolar Levels. Applied and Environmental Microbiology, 2008, 74, 3718-3729.	3.1	154
114	Detection and Quantification of <i>Geobacter lovleyi</i> Strain SZ: Implications for Bioremediation at Tetrachloroethene- and Uranium-Impacted Sites. Applied and Environmental Microbiology, 2007, 73, 6898-6904.	3.1	52
115	In Situ Bioreduction of Uranium (VI) to Submicromolar Levels and Reoxidation by Dissolved Oxygen. Environmental Science & Envi	10.0	182
116	Hydraulic performance analysis of a multiple injection–extraction well system. Journal of Hydrology, 2007, 336, 294-302.	5.4	28
117	Micro-Scale Heterogeneity in Biogeochemical Uranium Cycling. AIP Conference Proceedings, 2007, , .	0.4	0
118	GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME Journal, 2007, $1,67-77$.	9.8	554
119	Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria. Journal of Contaminant Hydrology, 2007, 92, 129-148.	3.3	54
120	Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition. Applied Microbiology and Biotechnology, 2007, 77, 713-721.	3.6	54
121	Pilot-Scale in Situ Bioremediation of Uranium in a Highly Contaminated Aquifer. 1. Conditioning of a Treatment Zone. Environmental Science & Environme	10.0	160
122	A Nested-Cell Approach for In Situ Remediation. Ground Water, 2006, 44, 266-274.	1.3	51
123	Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrifying fluidized bed reactor. Applied Microbiology and Biotechnology, 2006, 71, 748-760.	3.6	44
124	A parametric transfer function methodology for analyzing reactive transport in nonuniform flow. Journal of Contaminant Hydrology, 2006, 83, 27-41.	3.3	30
125	Optimisation of anaerobic/anoxic/oxic process to improve performance and reduce operating costs. Journal of Chemical Technology and Biotechnology, 2006, 81, 1391-1397.	3.2	19
126	Pilot-Scale in Situ Bioremedation of Uranium in a Highly Contaminated Aquifer. 2. Reduction of U(VI) and Geochemical Control of U(VI) Bioavailability. Environmental Science &	10.0	242

#	Article	IF	Citations
127	Uranium (VI) Reduction by Denitrifying Biomass. Bioremediation Journal, 2005, 9, 49-61.	2.0	23
128	Mass-Transfer Limitations for Nitrate Removal in a Uranium-Contaminated Aquifer. Environmental Science & Environmental Science	10.0	36
129	Bioreduction of Uranium in a Contaminated Soil Column. Environmental Science & Eamp; Technology, 2005, 39, 4841-4847.	10.0	133
130	Perturbation of syntrophic isobutyrate and butyrate degradation with formate and hydrogen., 2000, 52, 404-411.		23
131	Degradation of biphenyl by methanogenic microbial consortium. Biotechnology Letters, 1999, 21, 741-745.	2.2	12
132	Anaerobic dechlorination of perchloroethylene (PCE) in soil by a dechlorinating microbial consortium. Journal of Bioscience and Bioengineering, 1998, 86, 588-594.	0.9	10
133	Anaerobic dechlorination of trichloroethylene (TCE) to ethylene using complex organic materials. Water Research, 1998, 32, 1445-1454.	11.3	38
134	Dechlorination of spiked PCBs in lake sediment by anaerobic microbial granules. Water Research, 1998, 32, 3013-3020.	11.3	23
135	Dechlorination of polychlorinated biphenyl congeners by an anaerobic microbial consortium. Applied Microbiology and Biotechnology, 1996, 46, 673-677.	3.6	34
136	Anaerobic dechlorination and mineralization of pentachlorophenol and 2,4,6-trichlorophenol by methanogenic pentachlorophenol-degrading granules. Applied Microbiology and Biotechnology, 1996, 44, 801-806.	3.6	53
137	Effect of storage on the performance of methanogenic granules. Water Research, 1995, 29, 1445-1452.	11.3	20
138	Anaerobic Degradation of Normal- and Branched-Chain Fatty Acids with Four or More Carbons to Methane by a Syntrophic Methanogenic Triculture. Applied and Environmental Microbiology, 1994, 60, 2220-2226.	3.1	40
139	Comparison of rod- versus filament-type methanogenic granules: microbial population and reactor performance. Applied Microbiology and Biotechnology, 1993, 39, 795-803.	3.6	18
140	Metabolic properties and kinetics of methanogenic granules. Applied Microbiology and Biotechnology, 1993, 39, 804-811.	3.6	28
141	Energetics and regulations of formate and hydrogen metabolism by Methanobacterium formicicum. Archives of Microbiology, 1993, 159, 57-65.	2.2	47
142	Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules. Applied Microbiology and Biotechnology, 1992, 38, 282-290.	3.6	76
143	Ecoengineering high rate anaerobic digestion systems: Analysis of improved syntrophic biomethanation catalysts. Biotechnology and Bioengineering, 1990, 35, 990-999.	3.3	49
144	Cultivation of anaerobic granular sludge in UASB reactors with aerobic activated sludge as seed. Water Research, 1987, 21, 789-799.	11.3	89