Taher Niknam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1167715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fuzzy modeling and control of a class of nonâ€differentiable multiâ€input multiâ€output nonlinear systems. Asian Journal of Control, 2022, 24, 942-955.	1.9	5
2	Synergies Between Transportation Systems, Energy Hub and the Grid in Smart Cities. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 7371-7385.	4.7	12
3	Constrained Robust Control by a Novel Dynamic Sliding Mode Surface. International Journal of Control, Automation and Systems, 2022, 20, 823-830.	1.6	2
4	Fuzzy model predictive MPPT control of interconnected wind turbines drivetrain. Asian Journal of Control, 2022, 24, 2714-2728.	1.9	4
5	Extended Kalman Filter-Based Approach for Nodal Pricing in Active Distribution Networks. IEEE Systems Journal, 2021, 15, 487-496.	2.9	10
6	Optimal Multi-Operation Energy Management in Smart Microgrids in the Presence of RESs Based on Multi-Objective Improved DE Algorithm: Cost-Emission Based Optimization. Applied Sciences (Switzerland), 2021, 11, 3661.	1.3	42
7	Fourier Singular Values-Based False Data Injection Attack Detection in AC Smart-Grids. Applied Sciences (Switzerland), 2021, 11, 5706.	1.3	16
8	Cyber-Attack Detection in DC Microgrids Based on Deep Machine Learning and Wavelet Singular Values Approach. Electronics (Switzerland), 2021, 10, 1914.	1.8	24
9	Blockchain-Based Securing of Data Exchange in a Power Transmission System Considering Congestion Management and Social Welfare. Sustainability, 2021, 13, 90.	1.6	149
10	Self-Scheduling Approach to Coordinating Wind Power Producers With Energy Storage and Demand Response. IEEE Transactions on Sustainable Energy, 2020, 11, 1210-1219.	5.9	41
11	Probabilistic Model for Microgrids Optimal Energy Management Considering AC Network Constraints. IEEE Systems Journal, 2020, 14, 2703-2712.	2.9	12
12	Multiâ€objective optimisation method for coordinating battery storage systems, photovoltaic inverters and tap changers. IET Renewable Power Generation, 2020, 14, 475-483.	1.7	12
13	Optimal design procedure of a high-torque-density dual-stator consequent-pole Vernier PM machine. Electrical Engineering, 2020, 102, 2637-2653.	1.2	2
14	Smart coordinated management of distribution networks with high penetration of PEVs using FLC. IET Generation, Transmission and Distribution, 2020, 14, 476-485.	1.4	11
15	Technoâ€economic potential gains of electric springs in distribution networks operations. IET Generation, Transmission and Distribution, 2020, 14, 98-107.	1.4	3
16	Flexible operation of grid onnected microgrid using ES. IET Generation, Transmission and Distribution, 2020, 14, 254-264.	1.4	39
17	Wind Turbine Drivetrain Technologies. IEEE Transactions on Industry Applications, 2020, 56, 1729-1741.	3.3	32
18	IoT in Smart Grid: Energy Management Opportunities and Security Challenges. IFIP Advances in Information and Communication Technology, 2020, , 319-327.	0.5	2

#	Article	IF	CITATIONS
19	Stochastic multi-objective distribution automation strategies from reliability enhancement point of view in the presence of plug in electric vehicles. Journal of Intelligent and Fuzzy Systems, 2019, 36, 2933-2945.	0.8	2
20	Multi-objective day-ahead scheduling of microgrids using modified grey wolf optimizer algorithm. Journal of Intelligent and Fuzzy Systems, 2019, 36, 2857-2870.	0.8	13
21	Flexible, reliable, and renewable power system resource expansion planning considering energy storage systems and demand response programs. IET Renewable Power Generation, 2019, 13, 1862-1872.	1.7	62
22	Hybrid Optimization Algorithm to Solve the Nonconvex Multiarea Economic Dispatch Problem. IEEE Systems Journal, 2019, 13, 3400-3409.	2.9	46
23	Multi-Objective Coordination of Local and Centralized Volt/Var Control with Optimal Switch and Distributed Generations Placement. Journal of Intelligent and Fuzzy Systems, 2019, 36, 6605-6617.	0.8	4
24	Integrated battery model in costâ€effective operation and load management of grid onnected smart nanoâ€grid. IET Renewable Power Generation, 2019, 13, 1123-1131.	1.7	11
25	Image segmentation using multilevel thresholding based on modified bird mating optimization. Multimedia Tools and Applications, 2019, 78, 23003-23027.	2.6	32
26	A Secure Distributed Cloud-Fog Based Framework for Economic Operation of Microgrids. , 2019, , .		9
27	Integrated resource expansion planning of wind integrated power systems considering demand response programmes. IET Renewable Power Generation, 2019, 13, 519-529.	1.7	50
28	Power Conditioning of Distribution Networks via Single-Phase Electric Vehicles Equipped. IEEE Systems Journal, 2019, 13, 3433-3442.	2.9	44
29	Robust and effective parallel process to coordinate multiâ€area economic dispatch (MAED) problems in the presence of uncertainty. IET Generation, Transmission and Distribution, 2019, 13, 4197-4205.	1.4	18
30	Hourly electricity and heat Demand Response in the OEF of the integrated electricityâ€heatâ€natural gas system. IET Renewable Power Generation, 2019, 13, 2853-2863.	1.7	11
31	Dayâ€ahead energy management framework for a networked gas–heat–electricity microgrid. IET Generation, Transmission and Distribution, 2019, 13, 4617-4629.	1.4	16
32	Stochastic Electricity Social Welfare Enhancement Based on Consensus Neighbor Virtualization. IEEE Transactions on Industrial Electronics, 2019, 66, 9571-9580.	5.2	10
33	Smart Wire Placement to Facilitate Large-Scale Wind Energy Integration: An Adaptive Robust Approach. IEEE Transactions on Sustainable Energy, 2019, 10, 1981-1992.	5.9	10
34	Optimal Partitioning of Smart Distribution Systems Into Supply-Sufficient Microgrids. IEEE Transactions on Smart Grid, 2019, 10, 2523-2533.	6.2	50
35	Probabilistic Load Forecasting Using an Improved Wavelet Neural Network Trained by Generalized Extreme Learning Machine. IEEE Transactions on Smart Grid, 2018, 9, 6961-6971.	6.2	137
36	Proactive operation of electric vehicles in harmonic polluted smart distribution networks. IET Generation, Transmission and Distribution, 2018, 12, 967-975.	1.4	40

#	Article	IF	CITATIONS
37	Fast Decomposed Energy Flow in Large-Scale Integrated Electricity–Gas–Heat Energy Systems. IEEE Transactions on Sustainable Energy, 2018, 9, 1565-1577.	5.9	81
38	Bundled Generation and Transmission Planning Under Demand and Wind Generation Uncertainty Based on a Combination of Robust and Stochastic Optimization. IEEE Transactions on Sustainable Energy, 2018, 9, 1477-1486.	5.9	59
39	Investigation of Carrier Demand Response Uncertainty on Energy Flow of Renewable-Based Integrated Electricity–Gas–Heat Systems. IEEE Transactions on Industrial Informatics, 2018, 14, 5133-5142.	7.2	71
40	Distribution automation planning and operation considering optimized switch placement and feeder reconfiguration strategies from reliability enhancement perspective. Journal of Intelligent and Fuzzy Systems, 2018, 35, 3493-3506.	0.8	2
41	Convex Models for Optimal Utility-Based Distributed Generation Allocation in Radial Distribution Systems. IEEE Systems Journal, 2018, 12, 3497-3508.	2.9	10
42	Probabilistic wind power forecasting using a novel hybrid intelligent method. Neural Computing and Applications, 2018, 30, 473-485.	3.2	24
43	Advanced Model Predictive MPPT and Frequency Regulation In Interconnected Wind Turbine Drivetrains. , 2018, , .		7
44	Maximizing Social Welfare Considering the Uncertainty of Wind Power Plants Using a Distributed Consensus-based Algorithm. , 2018, , .		4
45	Moving beyond the optimal transmission switching: stochastic linearised SCUC for the integration of wind power generation and equipment failures uncertainties. IET Generation, Transmission and Distribution, 2018, 12, 3780-3792.	1.4	25
46	Dynamics and Control of a Shared Wind Turbine Drivetrain. IEEE Transactions on Industry Applications, 2018, 54, 6394-6400.	3.3	11
47	Towards robust OPF solution strategy for the future AC/DC grids: case of VSCâ€HVDCâ€connected offshore wind farms. IET Renewable Power Generation, 2018, 12, 691-701.	1.7	24
48	Probabilistic Forecasting of Hourly Electricity Price by Generalization of ELM for Usage in Improved Wavelet Neural Network. IEEE Transactions on Industrial Informatics, 2017, 13, 71-79.	7.2	110
49	Probabilistic electricity price forecasting by improved clonal selection algorithm and wavelet preprocessing. Neural Computing and Applications, 2017, 28, 3889-3901.	3.2	24
50	Analysis, control and design of speed control of electric vehicles delayed model: multiâ€objective fuzzy fractionalâ€order controller. IET Science, Measurement and Technology, 2017, 11, 249-261.	0.9	37
51	Modelâ€predictive control based on Takagiâ€Sugeno fuzzy model for electrical vehicles delayed model. IET Electric Power Applications, 2017, 11, 918-934.	1.1	70
52	Adaptive PI controller to voltage regulation in power systems: STATCOM as a case study. ISA Transactions, 2017, 66, 325-334.	3.1	34
53	Bidding strategies of the joint wind, hydro, and pumpedâ€storage in generation company using novel improved clonal selection optimisation algorithm. IET Science, Measurement and Technology, 2017, 11, 991-1001.	0.9	15

54 Energy carriers management based on energy consumption. , 2017, , .

#	Article	IF	CITATIONS
55	New Stochastic Bi-Objective Optimal Cost and Chance of Operation Management Approach for Smart Microgrid. IEEE Transactions on Industrial Informatics, 2016, 12, 2031-2040.	7.2	39
56	Harmonic Elimination in Multilevel Inverters Under Unbalanced Voltages and Switching Deviation Using a New Stochastic Strategy. IEEE Transactions on Industrial Informatics, 2016, 12, 716-725.	7.2	80
57	Time-Varying Sliding Mode Control Strategy for Multibus Low-Voltage Microgrids with Parallel Connected Renewable Power Sources in Islanding Mode. Journal of Energy Engineering - ASCE, 2016, 142, 05016002.	1.0	42
58	T–S fuzzy model predictive speed control of electrical vehicles. ISA Transactions, 2016, 64, 231-240.	3.1	73
59	Speed control of electrical vehicles: a timeâ€varying proportional–integral controllerâ€based typeâ€2 fuzzy logic. IET Science, Measurement and Technology, 2016, 10, 185-192.	0.9	52
60	A robust adaptive load frequency control for micro-grids. ISA Transactions, 2016, 65, 220-229.	3.1	141
61	Free chattering hybrid sliding mode control for a class of nonâ€linear systems: electric vehicles as a case study. IET Science, Measurement and Technology, 2016, 10, 776-785.	0.9	65
62	Stochastic Reconfiguration and Optimal Coordination of V2G Plug-in Electric Vehicles Considering Correlated Wind Power Generation. IEEE Transactions on Sustainable Energy, 2015, 6, 822-830.	5.9	152
63	Expected Cost Minimization of Smart Grids With Plug-In Hybrid Electric Vehicles Using Optimal Distribution Feeder Reconfiguration. IEEE Transactions on Industrial Informatics, 2015, 11, 388-397.	7.2	137
64	Onâ€line parameter identification of power plant characteristics based on phasor measurement unit recorded data using differential evolution and bat inspired algorithm. IET Science, Measurement and Technology, 2015, 9, 376-392.	0.9	16
65	Multiâ€øbjective probabilistic reconfiguration considering uncertainty and multiâ€level load model. IET Science, Measurement and Technology, 2015, 9, 44-55.	0.9	28
66	Scenario-Based Optimal Bidding Strategies of GENCOs in the Incomplete Information Electricity Market Using a New Improved Prey—Predator Optimization Algorithm. IEEE Systems Journal, 2015, 9, 1485-1495.	2.9	28
67	Reliability-Oriented Reconfiguration of Vehicle-to-Grid Networks. IEEE Transactions on Industrial Informatics, 2015, 11, 682-691.	7.2	73
68	Joint successive base station switch off and user subcarrier allocation optimization for green multicarrier based cellular networks. , 2015, , .		4
69	A novel multi-objective self-adaptive modifiedÎ,-firefly algorithm for optimal operation management of stochastic DFR strategy. International Transactions on Electrical Energy Systems, 2015, 25, 976-993.	1.2	8
70	An optimal PMU placement method for power system observability under various contingencies. International Transactions on Electrical Energy Systems, 2015, 25, 589-606.	1.2	37
71	Short term load forecasting of distribution systems by a new hybrid modified FA-backpropagation method. Journal of Intelligent and Fuzzy Systems, 2014, 26, 517-522.	0.8	28
72	Optimal stochastic capacitor placement problem from the reliability and cost views using firefly algorithm. IET Science, Measurement and Technology, 2014, 8, 260-269.	0.9	27

#	Article	IF	CITATIONS
73	New selfâ€adaptive batâ€inspired algorithm for unit commitment problem. IET Science, Measurement and Technology, 2014, 8, 505-517.	0.9	24
74	Optimal Distribution Feeder Reconfiguration for Reliability Improvement Considering Uncertainty. IEEE Transactions on Power Delivery, 2014, 29, 1344-1353.	2.9	195
75	An optimal type II fuzzy sliding mode control design for a class of nonlinear systems. Nonlinear Dynamics, 2014, 75, 73-83.	2.7	46
76	Stochastic scenarioâ€based model and investigating size of energy storages for PEMâ€fuel cell unit commitment of microâ€grid considering profitable strategies. IET Generation, Transmission and Distribution, 2014, 8, 1228-1243.	1.4	30
77	Intelligent stochastic framework to solve the reconfiguration problem from the reliability view. IET Science, Measurement and Technology, 2014, 8, 245-259.	0.9	30
78	Multiâ€objective shortâ€term scheduling of thermoelectric power systems using a novel multiâ€objective <i>Î,</i> â€improved cuckoo optimisation algorithm. IET Generation, Transmission and Distribution, 2014, 8, 873-894.	1.4	31
79	Modified shuffled frog leaping algorithm for multi-objective optimal power flow with FACTS devices. Journal of Intelligent and Fuzzy Systems, 2014, 26, 681-692.	0.8	22
80	Dynamic optimal power flow using hybrid particle swarm optimization and simulated annealing. International Transactions on Electrical Energy Systems, 2013, 23, 975-1001.	1.2	63
81	Robust, fast and optimal solution of practical economic dispatch by a new enhanced gradientâ€based simplified swarm optimisation algorithm. IET Generation, Transmission and Distribution, 2013, 7, 620-635.	1.4	39
82	Reserve Constrained Dynamic Environmental/Economic Dispatch: A New Multiobjective Self-Adaptive Learning Bat Algorithm. IEEE Systems Journal, 2013, 7, 763-776.	2.9	73
83	A new modified teaching-learning algorithm for reserve constrained dynamic economic dispatch. IEEE Transactions on Power Systems, 2013, 28, 749-763.	4.6	144
84	Multi-Objective Stochastic Distribution Feeder Reconfiguration in Systems With Wind Power Generators and Fuel Cells Using the Point Estimate Method. IEEE Transactions on Power Systems, 2013, 28, 1483-1492.	4.6	148
85	Multiobjective Optimal Reactive Power Dispatch and Voltage Control: A New Opposition-Based Self-Adaptive Modified Gravitational Search Algorithm. IEEE Systems Journal, 2013, 7, 742-753.	2.9	73
86	Enhanced Bee Swarm Optimization Algorithm for Dynamic Economic Dispatch. IEEE Systems Journal, 2013, 7, 754-762.	2.9	74
87	Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network. Energies, 2012, 5, 790-814.	1.6	16
88	Multi-objective stochastic dynamic economic emission dispatch enhancement by fuzzy adaptive modified theta particle swarm optimization. Journal of Renewable and Sustainable Energy, 2012, 4, .	0.8	16
89	Scenario-Based Multiobjective Volt/Var Control in Distribution Networks Including Renewable Energy Sources. IEEE Transactions on Power Delivery, 2012, 27, 2004-2019.	2.9	206
90	A multi-objective fuzzy adaptive PSO algorithm for location of automatic voltage regulators in radial distribution networks. International Journal of Control, Automation and Systems, 2012, 10, 772-777.	1.6	13

#	Article	IF	CITATIONS
91	Stochastic generation scheduling considering wind power generators. Journal of Renewable and Sustainable Energy, 2012, 4, 063119.	0.8	10
92	Power management, dynamic modeling and control of wind/FC/batteryâ€bank based hybrid power generation system for standâ€alone application. European Transactions on Electrical Power, 2012, 22, 271-293.	1.0	14
93	A new tribe modified shuffled frog leaping algorithm for multiâ€øbjective distribution feeder reconfiguration considering distributed generator units. European Transactions on Electrical Power, 2012, 22, 308-333.	1.0	17
94	Hybrid Fuzzy Adaptive Particle Swarm Optimization and Differential Evolution Algorithm for Distribution Feeder Reconfiguration. Electric Power Components and Systems, 2011, 39, 158-175.	1.0	13
95	A NEW HYBRID EVOLUTIONARY OPTIMIZATION ALGORITHM FOR DISTRIBUTION FEEDER RECONFIGURATION. Applied Artificial Intelligence, 2011, 25, 951-971.	2.0	18
96	A new particle swarm optimization for non-convex economic dispatch. European Transactions on Electrical Power, 2011, 21, 656-679.	1.0	38
97	An efficient multi-objective modified shuffled frog leaping algorithm for distribution feeder reconfiguration problem. European Transactions on Electrical Power, 2011, 21, 721-739.	1.0	31
98	A novel Multiâ€objective Fuzzy Adaptive Chaotic PSO algorithm for Optimal Operation Management of distribution network with regard to fuel cell power plants. European Transactions on Electrical Power, 2011, 21, 1954-1983.	1.0	10
99	An efficient hybrid evolutionary algorithm based on PSO and ACO for distribution feeder reconfiguration. European Transactions on Electrical Power, 2010, 20, 575-590.	1.0	30
100	A hybrid evolutionary algorithm for distribution feeder reconfiguration. Sadhana - Academy Proceedings in Engineering Sciences, 2010, 35, 139-162.	0.8	11
101	An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering. Journal of Zhejiang University: Science A, 2009, 10, 512-519.	1.3	99
102	An Approach Based on Particle Swarm Optimization for Optimal Operation of Distribution Network Considering Distributed Generators. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	16