Elisete Pains Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1167429/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa) Tj ETQq1 1	0.784314	rgBT/Overlo
2	Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics, 2012, 13, 735.	2.8	118
3	Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics, 2014, 15, 420.	2.8	71
4	Indole-3-acetic acid production via the indole-3-pyruvate pathway by plant growth promoter Rhizobium tropici CIAT 899 is strongly inhibited by ammonium. Research in Microbiology, 2017, 168, 283-292.	2.1	35
5	Inoculation with plant growth-promoting bacteria alters the rhizosphere functioning of tomato plants. Applied Soil Ecology, 2021, 158, 103784.	4.3	35
6	The adaptive metabolomic profile and functional activity of tomato rhizosphere are revealed upon PGPB inoculation under saline stress. Environmental and Experimental Botany, 2021, 189, 104552.	4.2	15
7	The nodC, nodC, and glgX genes of Rhizobium tropici strain PRF 81. Functional and Integrative Genomics, 2010, 10, 425-431.	3.5	9
8	Root exudate supplemented inoculant of Azospirillum brasilense Ab-V5 is more effective in enhancing rhizosphere colonization and growth of maize. Environmental Sustainability, 2020, 3, 187-197.	2.8	8
9	Fast induction of biosynthetic polysaccharide genes lpxA, lpxE, and rkpl of Rhizobium sp. strain PRF 81 by common bean seed exudates is indicative of a key role in symbiosis. Functional and Integrative Genomics, 2013, 13, 275-283.	3.5	7
10	Ammonium excretion, auxin production and effects of maize inoculation with ethylenediamine-resistant mutants of Pseudomonas sp Bragantia, 2018, 77, 415-428.	1.3	7
11	Culturable bacterial pool from aged petroleum-contaminated soil: identification of oil-eating Bacillus strains. Annals of Microbiology, 2012, 62, 1681-1690.	2.6	6
12	Tn5 insertion in the tonB gene promoter affects iron-related phenotypes and increases extracellular siderophore levels in Gluconacetobacter diazotrophicus. Archives of Microbiology, 2015, 197, 223-233.	2.2	6
13	Effects of Rhizobium tropici azide-resistant mutants on growth, nitrogen nutrition and nodulation of common bean (Phaseolus vulgaris L.). Rhizosphere, 2021, 18, 100355.	3.0	3
14	Revealing potential functions of hypothetical proteins induced by genistein in the symbiosis island of Bradyrhizobium japonicum commercial strain SEMIA 5079 (= CPAC 15). BMC Microbiology, 2022, 22, 122.	3.3	1
15	Diversity and antimicrobial potential of the culturable rhizobacteria from medicinal plant Baccharis trimera Less D.C Brazilian Journal of Microbiology, 2022, , 1.	2.0	0