Moshe Sheintuch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11674052/publications.pdf

Version: 2024-02-01

169 papers 3,560 citations

136740 32 h-index 50 g-index

170 all docs

170 docs citations

170 times ranked

2467 citing authors

#	Article	IF	CITATIONS
1	Permeance inhibition due to reaction, coking and leakage of Pd membranes during methane steam reforming estimated from a micro-kinetic model. Chemical Engineering Journal, 2021, 411, 128272.	6.6	7
2	Product Composition and Kinetics of Methylal Decomposition on Alumina-Supported Pt, Ni, and Rh Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 11902-11909.	1.8	8
3	Methylal Steam Reforming with Pt/Al ₂ O ₃ , Ni/Al ₂ O ₃ , and Mixed Cu/ZnO/Al ₂ O ₃ Catalysts. Industrial & Description of the subset of the su	1.8	7
4	Cross-flow reactor design for Fischer Tropsch synthesis. Chemical Engineering Journal, 2019, 372, 277-293.	6.6	5
5	Pressure, Diffusion, and S/M Ratio Effects in Methanol Steam Reforming Kinetics. Industrial & Engineering Chemistry Research, 2018, 57, 3175-3186.	1.8	23
6	Architecture alternatives for propane dehydrogenation in a membrane reactor. Chemical Engineering Journal, 2018, 347, 900-912.	6.6	17
7	Bistability in membrane reactors due to membrane inhibition by competitive adsorption of reactants. Chemical Engineering Journal, 2018, 334, 1594-1604.	6.6	5
8	Methane steam reforming rates over Pt, Rh and Ni(111) accounting for H tunneling and for metal lattice vibrations. Surface Science, 2017, 656, 126-139.	0.8	20
9	What is the leanest stream to sustain a nonadiabatic loop reactor: Analysis and methane combustion experiments. AICHE Journal, 2017, 63, 2030-2042.	1.8	4
10	Kinetics and dynamics of methanol steam reforming on CuO/ZnO/alumina catalyst. Applied Catalysis A: General, 2017, 540, 47-56.	2.2	42
11	The Design Space of the Embryonic Cell Cycle Oscillator. Biophysical Journal, 2017, 113, 743-752.	0.2	4
12	Multiâ€fuel scaledâ€down autothermal pure H ₂ generator: Design and proof of concept. AICHE Journal, 2016, 62, 2112-2125.	1.8	13
13	Approximate models of concentration-polarization in Pd-membrane separators. Fast numerical analysis. Journal of Membrane Science, 2016, 500, 136-150.	4.1	8
14	Semianalytical characterization of turbulence from radial impellers, with experimental and numerical validation. AICHE Journal, 2015, 61, 1413-1426.	1.8	10
15	Pure hydrogen production in a membrane reformer: Demonstration, macro-scale and atomic scale modeling. Chemical Engineering Journal, 2015, 278, 363-373.	6.6	14
16	H Tunneling Effects on Sequential Dissociation of Methane over Ni(111) and the Overall Rate of Methane Reforming. Journal of Physical Chemistry C, 2015, 119, 9260-9273.	1.5	7
17	Directing selectivity of ethanol steam reforming inÂmembrane reactors. International Journal of Hydrogen Energy, 2015, 40, 5837-5848.	3.8	49
18	Can the permeance of a Pd-based membrane be predicted from first principles?. Current Opinion in Chemical Engineering, 2015, 9, 27-33.	3.8	0

#	Article	IF	CITATIONS
19	Design concepts of a scaled-down autothermal membrane reformer for on board hydrogen production. Chemical Engineering Journal, 2015, 282, 123-136.	6.6	9
20	On-site pure hydrogen production by methane steam reforming in high flux membrane reactor: Experimental validation, model predictions and membrane inhibition. Chemical Engineering Journal, 2015, 262, 862-874.	6.6	103
21	Effective approximations for concentration-polarization in Pd-membrane separators. Chemical Engineering Journal, 2015, 260, 835-845.	6.6	22
22	Hydrodynamic instability of thermal fronts in reactive porous media: Spinning patterns. Physical Review E, 2014, 89, 032908.	0.8	3
23	Modeling H2 transport through a Pd or Pd/Ag membrane, and its inhibition by co-adsorbates, from first principles. Journal of Membrane Science, 2014, 466, 58-69.	4.1	49
24	Kinetic effects on transversal instability of planar fronts in packed-bed reactors. Chemical Engineering Journal, 2014, 236, 212-222.	6.6	1
25	Predicting CH ₄ Dissociation Kinetics on Metals: Trends, Sticking Coefficients, H Tunneling, and Kinetic Isotope Effect. Journal of Physical Chemistry C, 2013, 117, 22811-22826.	1.5	47
26	A Tunnel Model for Activated Hydrogen Dissociation on Metal Surfaces. Journal of Physical Chemistry C, 2013, 117, 7475-7486.	1.5	22
27	Kinetics of Catalytic OH Dissociation on Metal Surfaces. Journal of Physical Chemistry C, 2012, 116, 5700-5709.	1.5	11
28	Are 3â€D models necessary to simulate packed bed reactors? analysis and 3â€D simulations of adiabatic and cooled reactors. AICHE Journal, 2012, 58, 3494-3503.	1.8	4
29	Oxygen-Assisted Water Dissociation on Metal Surfaces: Kinetics and Quantum Effects. Journal of Physical Chemistry C, 2011, 115, 10063-10072.	1.5	3
30	Control of moving pulses in an one-dimensional model of cardiac tissue. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 5377-5382.	0.4	0
31	Modelâ€based optimization of hydrogen generation by methane steam reforming in autothermal packedâ€bed membrane reformer. AICHE Journal, 2011, 57, 525-541.	1.8	46
32	Transversal thermal patterns in packedâ€bed reactors with simple kinetics: Bifurcation criterion and simulations. AICHE Journal, 2011, 57, 735-748.	1.8	3
33	Alkanes Dehydrogenation. , 2011, , 183-200.		0
34	Transversal patterns in threeâ€dimensional packed bed reactors: Oscillatory kinetics. AICHE Journal, 2010, 56, 2887-2897.	1.8	3
35	Atomistic calculation of adsorption in activated carbon with pore-size distribution. Journal of Colloid and Interface Science, 2010, 342, 445-454.	5.0	13
36	Spinning propagation of diffusionally unstable planar fronts. Physical Review E, 2010, 81, 055204.	0.8	4

#	Article	IF	Citations
37	Drifting solitary waves in a reaction-diffusion medium with differential advection. Physical Review E, 2010, 81, 025203.	0.8	4
38	Experimental Optimization of an Autonomous Scaled-Down Methane Membrane Reformer for Hydrogen Generation. Industrial & Engineering Chemistry Research, 2010, 49, 1123-1129.	1.8	32
39	Why Turing mechanism is an obstacle to stationary periodic patterns in bounded reaction-diffusion media with advection. Physical Chemistry Chemical Physics, 2010, 12, 3957.	1.3	8
40	Prediction of 3D Transversal Patterns in Packed-Bed Reactors Using a Reduced 2D Model: Oscillatory Kinetics. Industrial & Engineering Chemistry Research, 2010, 49, 10558-10564.	1.8	2
41	Principal bifurcations and symmetries in the emergence of reaction-diffusion-advection patterns on finite domains. Physical Review E, 2009, 80, 056201.	0.8	15
42	Diffusion enhancement in composites of nanotubes and porous structures. Molecular Simulation, 2009, 35, 100-108.	0.9	1
43	Approximate characteristics of a moving temperature front in a fixed-bed catalytic reactor: Effect of mass dispersion. Chemical Engineering Journal, 2009, 154, 115-119.	6.6	4
44	Comments on "Transversal moving-front patterns. Criteria and simulations for two-bed and cylindrical shell packed-bed reactors―by Nekhamkina and Sheintuch. Chemical Engineering Science, 2009, 64, 426-427.	1.9	1
45	Demonstration of a scaled-down autothermal membrane methane reformer for hydrogen generation. International Journal of Hydrogen Energy, 2009, 34, 8866-8876.	3.8	38
46	Control of rotating pulses in a loop reactor. Journal of Process Control, 2009, 19, 954-963.	1.7	12
47	Loop Reactor Design and Control for Reversible Exothermic Reactions. Industrial & Engineering Chemistry Research, 2009, 48, 5185-5192.	1.8	12
48	The relation between surface composition of Pd–Cu/ACC catalysts prepared by selective deposition and their denitrification behavior. Catalysis Communications, 2009, 10, 1137-1141.	1.6	32
49	Subsurface Incorporation of Oxygen into Palladium(111): A Theoretical Study of Energetics and Kinetics. Journal of Physical Chemistry C, 2009, 113, 15326-15336.	1.5	12
50	Towards nonlinear selection of reaction-diffusion patterns in presence of advection: a spatial dynamics approach. Physical Chemistry Chemical Physics, 2009, 11, 9210.	1.3	16
51	Using sampled-data dynamic controller to stabilize rotating pulses. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 90-95.	0.4	0
52	Structure of operating domains of loop reactors. AICHE Journal, 2008, 54, 1292-1302.	1.8	16
53	Design of a thermally balanced membrane reformer for hydrogen production. AICHE Journal, 2008, 54, 2735-2750.	1.8	29
54	Approximate design of loop reactors. Chemical Engineering Science, 2008, 63, 4924-4934.	1.9	11

#	Article	IF	CITATIONS
55	Transversal moving-front patterns: Criteria and simulations for two-bed and cylindrical shell packed-bed reactors. Chemical Engineering Science, 2008, 63, 3716-3726.	1.9	8
56	Transversal Hot Zones Formation in Catalytic Packed-Bed Reactors. Industrial & Engineering Chemistry Research, 2008, 47, 7509-7523.	1.8	27
57	Comparative Theoretical Study of CO Adsorption and Desorption Kinetics on (111) Surfaces of Transition Metals. Journal of Physical Chemistry C, 2008, 112, 14377-14384.	1.5	28
58	Diffusion on Metal Surfaces: Formalism and Application to CO Diffusion. Journal of Physical Chemistry C, 2008, 112, 15510-15516.	1.5	8
59	Boundary-induced patterns in excitable systems: The structure of oscillatory domain. Physical Review E, 2007, 75, 056210.	0.8	7
60	Theoretical Study of Catalytic CO Oxidation on (111) Metal Surfaces:  Calculating Rate Constants That Account for Tunnel Effect. Journal of Physical Chemistry C, 2007, 111, 9184-9193.	1.5	11
61	Axial and transversal patterns during CO oxidation in fixed beds. Chemical Engineering Science, 2007, 62, 4948-4953.	1.9	5
62	Activated diffusion in relaxed porous clusters. Chemical Engineering Science, 2007, 62, 2242-2253.	1.9	6
63	Hydrodenitrification with PdCu Catalysts: Catalyst Optimization by Experimental and Quantum Chemical Approaches. Israel Journal of Chemistry, 2006, 46, 1-15.	1.0	10
64	Predicting Solute Adsorption on Activated Carbon:  Phenol. Langmuir, 2006, 22, 3614-3621.	1.6	68
65	ROBUST CONTROL OF STATIONARY PLANAR FRONTS IN REACTION-DIFFUSION SYSTEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 250-255.	0.4	0
66	Predicting the activation energy of catalytic dissociation of the heteroatomic AB bond. Chemical Physics, 2006, 324, 129-139.	0.9	7
67	Control design for suppressing transversal patterns in reaction–(convection)–diffusion systems. Journal of Process Control, 2006, 16, 913-921.	1.7	2
68	Using Lyapunov's direct method for wave suppression in reactive systems. Systems and Control Letters, 2006, 55, 566-572.	1.3	21
69	Catalytic spatiotemporal thermal patterns during CO oxidation on cylindrical surfaces: Experiments and simulations. Journal of Chemical Physics, 2006, 124, 034709.	1.2	13
70	Boundary-induced spatiotemporal complex patterns in excitable systems. Physical Review E, 2006, 73, 066224.	0.8	9
71	Spatiotemporal patterns in catalytic systems. Catalysis Today, 2005, 105, 254-274.	2.2	53
72	DFT study of small bimetallic palladium–copper clusters. Chemical Physics Letters, 2005, 401, 232-240.	1.2	44

#	Article	IF	Citations
73	The asymptotes of loop reactors. AICHE Journal, 2005, 51, 224-234.	1.8	40
74	Activated carbon cloth-supported Pd–Cu catalyst: Application for continuous water denitrification. Catalysis Today, 2005, 102-103, 121-127.	2.2	76
75	Analysis of design sensitivity of flow-reversal reactors: Simulations, approximations and oxidation experiments. Chemical Engineering Science, 2005, 60, 2991-2998.	1.9	6
76	Moving waves and spatiotemporal patterns due to weak thermal effects in models of catalytic oxidation. Journal of Chemical Physics, 2005, 122, 194701.	1.2	8
77	Stationary fronts due to weak thermal effects in models of catalytic oxidation. Journal of Chemical Physics, 2005, 123, 064708.	1.2	4
78	Enthalpy and Entropy Effects in Hydrogen Adsorption on Carbon Nanotubes. Langmuir, 2005, 21, 6282-6288.	1.6	31
79	Quantum Mechanical Model for the Dissociative Adsorption of Diatomic Molecules on Metal Surfaces. Journal of Physical Chemistry A, 2005, 109, 3542-3549.	1.1	13
80	Relationship between Kinetic and Thermodynamic Characteristics of Oxygen Dissociative Adsorption on Close-Packed Metal Surfaces. Journal of Physical Chemistry A, 2005, 109, 7957-7966.	1.1	12
81	Stabilizing the absolutely or convectively unstable homogeneous solutions of reaction-convection-diffusion systems. Physical Review E, 2004, 70, 026221.	0.8	3
82	Carbon membranes for high temperature gas separations: Experiment and theory. AICHE Journal, 2004, 50, 596-610.	1.8	46
83	Predicting the kinetics of the dissociative adsorption of homonuclear molecules on metal surfaces in gas phase and solution. Surface Science, 2004, 554, 159-169.	0.8	12
84	Predicting the kinetics of the dissociative adsorption of homonuclear molecules on metal surfaces in gas phase and solution II. Numerical calculations of the molecular oxygen dissociative adsorption on the $Pd(111)$ surface. Surface Science, 2004, 554, 170-182.	0.8	8
85	Application of a carbon membrane reactor for dehydrogenation reactions. Chemical Engineering Science, 2004, 59, 2013-2021.	1.9	47
86	Comparison of flow-reversal, internal-recirculation and loop reactors. Chemical Engineering Science, 2004, 59, 4065-4072.	1.9	28
87	Analysis of a carbon membrane reactor: from atomistic simulations of single-file diffusion to reactor design. Chemical Engineering Science, 2004, 59, 4739-4746.	1.9	11
88	Carbon-supported palladium catalysts. Molecular orbital study. Journal of Catalysis, 2003, 214, 53-67.	3.1	37
89	Stationary spatially complex solutions in cross-flow reactors with two reactions. AICHE Journal, 2003, 49, 1241-1249.	1.8	7
90	Comparing flow-reversal and inner recirculation reactors: Experiments and simulations. AICHE Journal, 2003, 49, 1849-1858.	1.8	10

#	Article	IF	CITATIONS
91	Thermal patterns in simple models of cylindrical reactors. Chemical Engineering Science, 2003, 58, 1441-1451.	1.9	12
92	Flow-rate effects in flow-reversal reactors: experiments, simulations and approximations. Chemical Engineering Science, 2003, 58, 1135-1146.	1.9	18
93	Asymptotic solutions of stationary patterns in convection-reaction-diffusion systems. Physical Review E, 2003, 68, 036207.	0.8	12
94	Pinning stationary planar fronts in diffusion-convection-reaction systems. Physical Review E, 2002, 66, 066213.	0.8	3
95	Spatially "chaotic―solutions in reaction-convection models and their bifurcations to moving waves. Physical Review E, 2002, 66, 016204.	0.8	10
96	Stabilization of Fronts in a Reactionâ^'Diffusion System:Â Application of the Gershgorin Theorem. Industrial & Diffusion Chemistry Research, 2002, 41, 2023-2032.	1.8	15
97	Theory of Dissociative Adsorption Kinetics of Homonuclear Diatomic Molecules on Solid Surfaces. Journal of Physical Chemistry B, 2002, 106, 11784-11794.	1.2	12
98	Controlling Front Position in Catalytic Diffusionâ^'Convectionâ^'Reaction Systems. Industrial & Engineering Chemistry Research, 2002, 41, 2136-2146.	1.8	11
99	Hydrotreating processes for catalytic abatement of water pollutants. Catalysis Today, 2002, 75, 63-67.	2.2	25
100	Analysis of front interaction and control in stationary patterns of reaction-diffusion systems. Physical Review E, 2001, 63, 056120.	0.8	13
101	REACTION ENGINEERING PRINCIPLES OF PROCESSES CATALYZED BY FRACTAL SOLIDS. Catalysis Reviews - Science and Engineering, 2001, 43, 233-289.	5 . 7	22
102	Hydrogen Interactions with a Pd4Cluster:Â Triplet and Singlet States and Transition Probability. Journal of Physical Chemistry A, 2001, 105, 11312-11326.	1.1	35
103	Front Stabilization by Finite-Output Control in Reaction-Diffusion Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2001, 34, 315-320.	0.4	0
104	Spatiotemporal patterns in models of cross-flow reactors. Catalysis Today, 2001, 70, 383-391.	2.2	3
105	Control strategies for front stabilization in a tubular reactor model. AICHE Journal, 2001, 47, 187-196.	1.8	9
106	Spatiotemporal patterns in models of cross-flow reactors. Regular and oscillatory kinetics. Chemical Engineering Science, 2001, 56, 771-778.	1.9	9
107	Pattern formation in models of fixed-bed reactors. Catalysis Today, 2001, 70, 369-382.	2.2	12
108	Spatiotemporal patterns in thermokinetic models of cross-flow reactors. AICHE Journal, 2000, 46, 1632-1640.	1.8	27

#	Article	IF	Citations
109	On the intermediate asymptote of diffusion-limited reactions in a fractal porous catalyst. Chemical Engineering Science, 2000, 55, 615-624.	1.9	14
110	Quantum chemical study of neutral and single charged palladium clusters. Journal of Molecular Catalysis A, 2000, 160, 445-451.	4.8	22
111	Modeling and analysis of spatiotemporal oscillatory patterns during CO oxidation in the catalytic converter. Chemical Engineering Science, 2000, 55, 1461-1475.	1.9	26
112	Cloth catalysts in water denitrification. Applied Catalysis B: Environmental, 2000, 27, 127-135.	10.8	72
113	Nonlinear analysis of stationary patterns in convection-reaction-diffusion systems. Physical Review E, 2000, 61, 2436-2444.	0.8	21
114	Catalytic Regeneration of Chloroorganics-Saturated Activated Carbon Using Hydrodechlorination. Industrial & Description of Chemistry Research, 2000, 39, 18-23.	1.8	33
115	Density Functional Study of the Interactions between Dihydrogen and Pdn(n= 1â^'4) Clusters. Journal of Physical Chemistry A, 2000, 104, 8089-8096.	1.1	48
116	Pattern formation in homogeneous and heterogeneous reactor models. Chemical Engineering Science, 1999, 54, 4535-4546.	1.9	20
117	Pattern formation in homogeneous reactor models. AICHE Journal, 1999, 45, 398-409.	1.8	26
118	Selectivity and Deactivation of Diffusion-Limited Reactions in a Pore-Fractal Catalyst. Industrial & Engineering Chemistry Research, 1999, 38, 3261-3269.	1.8	5
119	Theory of the Self-Exchange Electron Transfer in the Dioxygen/Superoxide System in Water. Journal of Physical Chemistry A, 1999, 103, 10699-10707.	1.1	10
120	Using weighted global control for stabilizing patterned states. Chaos, 1999, 9, 78-87.	1.0	7
121	Pattern Selection In A Diffusion-Reaction System With Global Or Long-Range Interaction. The IMA Volumes in Mathematics and Its Applications, 1999, , 265-282.	0.5	1
122	Quantum chemical study of small palladium clusters. Surface Science, 1998, 414, 148-158.	0.8	50
123	Design of Membranal Dehydrogenation Reactors:Â The Fast Reaction Asymptote. Industrial & Engineering Chemistry Research, 1998, 37, 807-814.	1.8	14
124	Catalytic Abatement of Water Pollutants. Industrial & Engineering Chemistry Research, 1998, 37, 309-326.	1.8	390
125	Patterns due to quintic kinetics in a diffusion-reaction system with global interaction. Journal of Chemical Physics, 1998, 109, 10612-10619.	1.2	6
126	Abatement of Pollutants by Adsorption and Oxidative Catalytic Regeneration. Industrial & Engineering Chemistry Research, 1997, 36, 4374-4380.	1.8	57

#	Article	IF	CITATIONS
127	Reaction-diffusion patterns on a disk or a square in a model with long-range interaction. Journal of Chemical Physics, 1997, 107, 8165-8174.	1.2	16
128	Dynamics of catalytic reactions and reactors. Catalysis Today, 1997, 36, 461-476.	2.2	8
129	Pattern selection in a general model of convection, diffusion and catalytic reaction. Physica D: Nonlinear Phenomena, 1997, 102, 125-146.	1.3	16
130	Spatiotemporal patterns in a heterogeneous model of a catalyst particle. Journal of Chemical Physics, 1996, 105, 289-298.	1.2	5
131	Spatiotemporal patterns in catalytic reactors. AICHE Journal, 1996, 42, 1041-1068.	1.8	53
132	Observations, modeling and optimization of yield, selectivity and activity during dehydrogenation of isobutane and propane in a Pd membrane reactor. Chemical Engineering Science, 1996, 51, 535-547.	1.9	79
133	Spatiotemporal Catalytic Patterns Due to Local Nonuniformities. The Journal of Physical Chemistry, 1996, 100, 15137-15144.	2.9	12
134	One- and two-dimensional spatiotemporal thermal patterns in a fixed-bed reactor. Chemical Engineering Science, 1995, 50, 3125-3141.	1.9	10
135	Spatiotemporal motions due to global interaction. Journal of Chemical Physics, 1994, 100, 3568-3581.	1.2	77
136	Spatiotemporal patterns in an isothermal heterogeneous model of a fixedâ€bed reactor. Journal of Chemical Physics, 1994, 101, 9573-9581.	1.2	10
137	Analysis of excitable waves and spatio-temporal patterns in fixed-bed reactors. Catalysis Today, 1994, 20, 515-523.	2.2	2
138	Patterns due to convection—diffusion—reaction interaction in a fixed-bed catalytic reactor. Chemical Engineering Science, 1994, 49, 5315-5326.	1.9	11
139	Excitable waves and spatiotemporal patterns in a fixed-bed reactor. AICHE Journal, 1994, 40, 120-130.	1.8	33
140	Impact of global interaction and symmetry on pattern selection and bifurcation. Journal of Chemical Physics, 1994, 101, 4688-4696.	1.2	22
141	Patterns of temperature pulses on electrically heated catalytic ribbons. Physica D: Nonlinear Phenomena, 1993, 63, 393-409.	1.3	50
142	Multiplicity patterns of activated-sludge with substrate-inhibition kinetics. Water Research, 1993, 27, 929-938.	5.3	6
143	Pattern selection in controlled reaction–diffusion systems. Journal of Chemical Physics, 1993, 98, 2823-2836.	1.2	70
144	Scaling approach to study diffusion and reaction processes on fractal catalysts. Chemical Engineering Science, 1992, 47, 4425-4433.	1.9	46

#	Article	IF	Citations
145	Fractal and multifractal analysis of the sensitivity of catalytic reactions to catalyst structure. Journal of Chemical Physics, 1991, 95, 6100-6111.	1.2	71
146	Design criteria for population selection in activated sludge. The Chemical Engineering Journal, 1991, 45, 173.	0.4	2
147	Fixed-bed reactor design for self-inhibitory substrates. The Chemical Engineering Journal, 1991, 47, B11-B21.	0.4	3
148	Complex behavior in controlled catalytic wires. The Journal of Physical Chemistry, 1990, 94, 5889-5896.	2.9	19
149	Numerical approaches for computation of fronts. Numerical Methods for Partial Differential Equations, 1990, 6, 43-58.	2.0	2
150	Excitable waves in a fixed bed reactor: Observations and analysis. Chemical Engineering Science, 1990, 45, 2125-2132.	1.9	12
151	Excitable waves in a fixed bed reactor: ethylene oxidation on platinum. Chemical Engineering Science, 1990, 45, 1897-1903.	1.9	12
152	Comparison of multiplicity patterns of a single catalytic pellet and a fixed catalytic bed for ethylene oxidation. Chemical Engineering Science, 1990, 45, 1331-1342.	1.9	13
153	Deterministic approaches to problems of diffusion, reaction and adsorption in a fractal porous catalyst. Chemical Engineering Science, 1989, 44, 69-79.	1.9	56
154	Kinetics falsification by symmetry breaking. 2. Olefin oxidation on a platinum wire. Industrial & Engineering Chemistry Research, 1989, 28, 955-960.	1.8	6
155	Kinetics falsification by symmetry breaking. 1. Steady-state analysis. Industrial & Engineering Chemistry Research, 1989, 28, 948-954.	1.8	5
156	Design of experiment and parameter estimation in a bistable system: ethylene oxidation on platinum. Industrial & Engineering Chemistry Research, 1988, 27, 1152-1157.	1.8	6
157	Steady state modeling of reactor-settler interaction. Water Research, 1987, 21, 1463-1472.	5.3	22
158	Analysis and modeling of multiplicity features. 1. Nonisothermal experiments. Industrial & Engineering Chemistry Research, 1987, 26, 786-794.	1.8	18
159	Analysis and modeling of multiplicity features. 2. Isothermal experiments. Industrial & Engineering Chemistry Research, 1987, 26, 794-804.	1.8	13
160	Identification of observed dynamic bifurcations and development of qualitative models. Chemical Engineering Science, 1987, 42, 41-52.	1.9	18
161	The determination of global solutions from local ones in catalytic systems showing steady-state multiplicity. Chemical Engineering Science, 1987, 42, 2103-2114.	1.9	10
162	Identification of observed dynamic centres for analysis of experimental data. Chemical Engineering Science, 1987, 42, 233-243.	1.9	11

#	ARTICLE	IF	CITATIONS
163	Species selection in a reactor-settler system. Biotechnology and Bioengineering, 1987, 30, 598-606.	1.7	11
164	Optimal feed distribution to a reactor with maximal rate. Industrial & Engineering Chemistry Fundamentals, 1986, 25, 228-233.	0.7	13
165	Dynamic features of two ordinary differential equations with widely separated time scales. Chemical Engineering Science, 1985, 40, 1653-1664.	1.9	20
166	Analysis and Qualitative Modelling of Experimentally Observed Dynamic Features. Springer Series in Synergetics, 1985, , 33-46.	0.2	1
167	Application of singularity theory to modeling of steady-state multiplicity: propylene oxidation on platinum. Industrial & Engineering Chemistry Fundamentals, 1983, 22, 209-215.	0.7	22
168	Modeling Internal Combustion Engine with Thermo-Chemical Recuperation of the Waste Heat by Methanol Steam Reforming. SAE International Journal of Engines, 0, 7, 234-242.	0.4	35
169	Reaction-diffusion patterns on a disk or a square in a model with long-range interaction. , 0, .		6