Geonel Rodriguez Gattorno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1167404/publications.pdf

Version: 2024-02-01

75 papers 2,968 citations

236612 25 h-index 54 g-index

75 all docs

75 docs citations

75 times ranked 5136 citing authors

#	Article	IF	Citations
1	Phase-pure TiO ₂ nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008, 19, 145605.	1.3	966
2	One-step synthesis of Mn3O4 nanoparticles: Structural and magnetic study. Journal of Colloid and Interface Science, 2005, 291, 175-180.	5.0	157
3	Efficient Anchoring of Silver Nanoparticles on N-Doped Carbon Nanotubes. Small, 2006, 2, 346-350.	5.2	143
4	Metallic Nanoparticles from Spontaneous Reduction of Silver(I) in DMSO. Interaction between Nitric Oxide and Silver Nanoparticles. Journal of Physical Chemistry B, 2002, 106, 2482-2487.	1.2	141
5	Novel Synthesis Pathway of ZnO Nanoparticles from the Spontaneous Hydrolysis of Zinc Carboxylate Salts. Journal of Physical Chemistry B, 2003, 107, 12597-12604.	1.2	104
6	Oxidative desulfurization (ODS) of organosulfur compounds catalyzed by peroxo-metallate complexes of WOx–ZrO2: Thermochemical, structural, and reactivity indexes analyses. Journal of Catalysis, 2011, 282, 201-208.	3.1	93
7	Synthesis of ZnO Nanoparticles on a Clay Mineral Surface in Dimethyl Sulfoxide Medium. Langmuir, 2004, 20, 2855-2860.	1.6	89
8	An Elementary Picture of Dielectric Spectroscopy in Solids: Physical Basis. Journal of Chemical Education, 2003, 80, 1062.	1.1	77
9	Optical Absorbance of Colloidal Suspensions of Silver Polyhedral Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 17512-17517.	1.2	74
10	Properties of Poly (ethylene oxide)/ whey Protein Isolate Nanofibers Prepared by Electrospinning. Food Biophysics, 2015, 10, 134-144.	1.4	65
11	Surface acid–basic properties of WOx–ZrO2 and catalytic efficiency in oxidative desulfurization. Applied Catalysis B: Environmental, 2009, 92, 1-8.	10.8	63
12	Influence of Brookite Impurities on the Raman Spectrum of TiO ₂ Anatase Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 19921-19930.	1.5	60
13	Thermal decomposition kinetics of MgAl layered double hydroxides. Materials Chemistry and Physics, 2012, 133, 621-629.	2.0	51
14	Synthesis and characterization of WO3 polymorphs: monoclinic, orthorhombic and hexagonal structures. Journal of Materials Science: Materials in Electronics, 2015, 26, 5526-5531.	1.1	47
15	Photoelectrochemical water oxidation at FTO WO3@CuWO4 and FTO WO3@CuWO4 BiVO4 heterojunction systems: An IMPS analysis. Electrochimica Acta, 2019, 308, 317-327.	2.6	43
16	Charge Transfer and Recombination Dynamics at Inkjet-Printed CuBi ₂ O ₄ Electrodes for Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2018, 122, 27169-27179.	1.5	41
17	The nucleation kinetics of ZnO nanoparticles from ZnCl2 in ethanol solutions. Nanoscale, 2010, 2, 2710.	2.8	35
18	Photoelectrochemical water oxidation at electrophoretically deposited WO3 films as a function of crystal structure and morphology. Electrochimica Acta, 2014, 140, 320-331.	2.6	35

#	Article	IF	Citations
19	Photocatalytic performance of nitrogen doped ZnO structures supported on graphene oxide for MB degradation. Chemosphere, 2019, 236, 124368.	4.2	34
20	Charge transfer and recombination kinetics at WO3 for photoelectrochemical water oxidation. Electrochimica Acta, 2017, 258, 900-908.	2.6	33
21	CeO2 thin films by flash evaporation. Solid State Ionics, 1997, 96, 89-93.	1.3	32
22	Hierarchically Nanostructured Barium Sulfate Fibers. Langmuir, 2010, 26, 6954-6959.	1.6	32
23	An intensity-modulated photocurrent spectroscopy study of the charge carrier dynamics of WO3/BiVO4 heterojunction systems. Solar Energy Materials and Solar Cells, 2020, 208, 110378.	3.0	31
24	Synthesis and Thermal Behavior of Metallic Cobalt Micro and Nanostructures. Nano-Micro Letters, 2011, 3, 12-19.	14.4	28
25	Anchoring of Silver Nanoparticles on Graphite and Isomorphous Lattices. Journal of Physical Chemistry C, 2007, 111, 5331-5336.	1.5	27
26	Synthesis and direct interactions of silver colloidal nanoparticles with pollutant gases. Colloid and Polymer Science, 2008, 286, 67-77.	1.0	25
27	Stable inks for inkjet printing of TiO2 thin films. Materials Science in Semiconductor Processing, 2018, 81, 75-81.	1.9	25
28	Thermal Characterization of Carbon Fiber-Reinforced Carbon Composites. Applied Composite Materials, 2019, 26, 321-337.	1.3	25
29	A combined theoretical–experimental study on the acidity of WOx-ZrO2 systems. Physical Chemistry Chemical Physics, 2008, 10, 4181.	1.3	21
30	Controlled Release of Phenytoin from Nanostructured TiO ₂ Reservoirs. Science of Advanced Materials, 2009, 1, 63-68.	0.1	21
31	Structural and thermal study of carbon-modified molybdenum sub-oxide catalysts. Applied Catalysis A: General, 2007, 321, 117-124.	2.2	18
32	Influence of morphology on the performance of ZnO-based dye-sensitized solar cells. RSC Advances, 2016, 6, 37424-37433.	1.7	18
33	Comparing the Efficiency of N-Doped TiO2 and N-Doped Bi2MoO6 Photo Catalysts for MB and Lignin Photodegradation. Catalysts, 2018, 8, 668.	1.6	18
34	Oxidation process of MoOxCy to MoO3: kinetics and mechanism. Journal of Solid State Chemistry, 2004, 177, 3281-3289.	1.4	16
35	Facile synthesis of rod-shaped bismuth sulfide@graphene oxide (Bi2S3@GO) composite. Materials Chemistry and Physics, 2018, 219, 376-389.	2.0	16
36	New Insights on Molybdenum Suboxide:Â Nature of Carbons in Isomerization Reactions. Journal of Physical Chemistry B, 2005, 109, 17518-17525.	1.2	15

#	Article	IF	CITATIONS
37	Cyclohexane Ring Opening on Alumina-Supported Rh and Ir Nanoparticles. Energy & Dels, 2007, 21, 1122-1126.	2.5	15
38	Dehydration Process of Hofmann-Type Layered Solids. Materials, 2013, 6, 1452-1466.	1.3	15
39	Tailoring Chemical Hardness in WOxâ^ZrO2 System. Chemistry of Materials, 2006, 18, 5446-5452.	3.2	13
40	Electrical Characterization of Schottky Diodes Based on Inkjet-Printed TiO ₂ Films. IEEE Electron Device Letters, 2018, 39, 1940-1943.	2.2	13
41	Inkjet-Printed Reduced Graphene Oxide (rGO) Films For Electrocatalytic Applications. Journal of the Electrochemical Society, 2019, 166, H3279-H3285.	1.3	13
42	Reversible Self-Assembly (fcc-bct) Crystallization of Confined Granular Spheres via a Shear Dimensionality Mechanism. Physical Review Letters, 2018, 121, 074302.	2.9	12
43	Structural, optical and photoelectrochemical properties ofÂtungsten oxide thin films grown by non-reactive RF-sputtering. Superlattices and Microstructures, 2019, 127, 123-127.	1.4	12
44	Synthesis and Characterization of RuS2Nanostructures. Journal of Physical Chemistry B, 2005, 109, 22715-22724.	1.2	11
45	Defects in Porous Networks of WO ₃ Particle Aggregates. ChemElectroChem, 2016, 3, 658-667.	1.7	11
46	Eco-friendly synthesis of egg-white capped silver nanoparticles for rapid, selective, and sensitive detection of Hg(II). MRS Communications, 2017, 7, 695-700.	0.8	11
47	Forced Hydrolysis vs Self-Hydrolysis of Zinc Acetate in Ethanol and Iso-butanol. ECS Transactions, 2006, 3, 23-28.	0.3	10
48	Fine tuning of inkjet printability parameters for NiO nanofilms fabrication. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123959.	2.3	9
49	Fabrication of Schottky barrier diodes based on ZnO for flexible electronics. Journal of Materials Science: Materials in Electronics, 2020, 31, 7373-7377.	1.1	9
50	"Tailoring the TiO2 phases through microwave-assisted hydrothermal synthesis: Comparative assessment of bactericidal activity― Materials Science and Engineering C, 2020, 117, 111290.	3.8	9
51	Activation of CdS nanoparticles by metallic ions and their selective interactions with PAMAM dendrimers. Colloid and Polymer Science, 2004, 282, 957-964.	1.0	8
52	Combined use of high resolution TGA with the isoconversion method: Kinetic analysis of the thermal dehydration of KNbWO6·H2O. Thermochimica Acta, 2005, 435, 176-180.	1.2	8
53	Effect of Slip Boundary Condition on the Design of Nanoparticle Focusing Lenses. Journal of Nanoscience and Nanotechnology, 2008, 8, 3741-3748.	0.9	8
54	Heat Transfer in Cassava Starch Biopolymers: Effect of the Addition of Borax. Polymers, 2021, 13, 4106.	2.0	7

#	Article	IF	CITATIONS
55	Unraveling amazing structural features of a highly efficient "oxo-Co/phosphate―catalyst for water oxidation. Applied Catalysis B: Environmental, 2021, 282, 119549.	10.8	6
56	Direct Interaction of Colloidal Nanostructured ZnO and SnO ₂ with NO and SO ₂ . Journal of Nanoscience and Nanotechnology, 2008, 8, 6389-6397.	0.9	6
57	Electrodeposition of ZnO for Application in Dye-sensitized Solar Cells. Journal of New Materials for Electrochemical Systems, 2013, 16, 209-215.	0.3	6
58	Inkjet Printing as High-Throughput Technique for the Fabrication of NiCo ₂ O ₄ Films. Advances in Materials Science and Engineering, 2017, 2017, 1-9.	1.0	5
59	Fabrication of graphitic carbon nitride films by inkjet printing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125919.	2.3	5
60	Effects of Sintering on the Thermal and Optical Properties of Zinc Oxide Ceramic. International Journal of Thermophysics, 2018, 39, 1.	1.0	4
61	High non-linear electrical properties of Li3xCo7–4xSb2+xO12 a new ceramic varistor. Journal of Alloys and Compounds, 2021, 878, 160356.	2.8	4
62	Thermophysical and optical properties of NiCo2O4@ZrO2: A potential composite for thermochemical processes. International Journal of Hydrogen Energy, 2021, 46, 10632-10641.	3.8	3
63	Role of assisting reagents on the synthesis of \hat{l}_{\pm} -Fe2O3 by microwave-assisted hydrothermal reaction. Journal of Materials Science: Materials in Electronics, 2021, 32, 9551-9566.	1.1	3
64	Mg-CaO.3 Electrochemical Activity Exposed to Hank's Physiological Solution and Properties of Ag-Nano-Particles Deposits. Metals, 2021, 11, 1357.	1.0	3
65	Self-generated active sites in graphene oxide-like materials by controlling the oxidative decomposition reactions of Sargassum. Journal of Environmental Chemical Engineering, 2021, 9, 106551.	3.3	3
66	Synthesis and characterization of TiO 2 nanoparticles: anatase, brookite, and rutile., 2007, 6650, 204.		2
67	RuS2Nanoparticles and Their Precursors:  A Theoretical Approach. Journal of Physical Chemistry C, 2007, 111, 6328-6334.	1.5	1
68	Tuning light transmission with smart fluids based on 1D carbon nanomaterials. Materials Research Express, 2019, 6, 115086.	0.8	1
69	Ce, Eu incorporation through doping of ALD-ZnO thin films for enhancing their photoluminescent properties. Nanotechnology, 2021, 32, 145601.	1.3	1
70	Direct interaction of colloidal nanostructured ZnO and SnO2 with NO and SO2. Journal of Nanoscience and Nanotechnology, 2008, 8, 6389-97.	0.9	1
71	Charge Dynamics at Surface-Modified, Nanostructured Hematite Photoelectrodes for Solar Water Splitting. Journal of the Electrochemical Society, 0, , .	1.3	1
72	Phase equilibria in the quasi-binary system Zn7Sb2O12–Li3Zn3Sb3O12 and thermal properties of Li3xZn7-4xSb2+xO12 solid solutions. Ceramics International, 2019, 45, 23119-23125.	2.3	0

#	Article	IF	CITATIONS
73	Hex Nut Shaped Mesocrystals from Hierarchical Organization of Hexagonal WO ₃ Microcrystals. Science of Advanced Materials, 2012, 4, 695-701.	0.1	O
74	MEASURING THE LIGHT CRUDE OIL (LCO) CONTENT IN STANDARD BIODIESEL/LCO BLENDS BY THERMAL ANALYSIS. Quimica Nova, 2018, 2018, .	0.3	0
75	Photoelectrochemistry of Semiconducting Oxide Materials for Solar Water Splitting: Characterization of Charge Carrier Dynamics Using IMPS. , 0, , .		0