MichaÅ, Filipiak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1167347/publications.pdf

Version: 2024-02-01

623734 794594 19 586 14 19 citations g-index h-index papers 23 23 23 560 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. PLoS ONE, 2017, 12, e0183236.	2.5	105
2	How to Make a Beetle Out of Wood: Multi-Elemental Stoichiometry of Wood Decay, Xylophagy and Fungivory. PLoS ONE, 2014, 9, e115104.	2.5	67
3	Key pollen host plants provide balanced diets for wild bee larvae: A lesson for planting flower strips and hedgerows. Journal of Applied Ecology, 2019, 56, 1410-1418.	4.0	57
4	Nutritional dynamics during the development of xylophagous beetles related to changes in the stoichiometry of 11 elements. Physiological Entomology, 2017, 42, 73-84.	1.5	49
5	Critical links between biodiversity and health in wild bee conservation. Trends in Ecology and Evolution, 2022, 37, 309-321.	8.7	48
6	A Better Understanding of Bee Nutritional Ecology Is Needed to Optimize Conservation Strategies for Wild Beesâ€"The Application of Ecological Stoichiometry. Insects, 2018, 9, 85.	2.2	35
7	Pollen Stoichiometry May Influence Detrital Terrestrial and Aquatic Food Webs. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	28
8	Plant–insect interactions: the role of ecological stoichiometry. Acta Agrobotanica, 2017, 70, .	1.0	27
9	Unravelling the dependence of a wild bee on floral diversity and composition using a feeding experiment. Science of the Total Environment, 2022, 820, 153326.	8.0	26
10	The Scarcity of Specific Nutrients in Wild Bee Larval Food Negatively Influences Certain Life History Traits. Biology, 2020, 9, 462.	2.8	24
11	Nutrient Dynamics in Decomposing Dead Wood in the Context of Wood Eater Requirements: The Ecological Stoichiometry of Saproxylophagous Insects. Zoological Monographs, 2018, , 429-469.	1.1	23
12	Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon. Scientific Reports, 2021, 11, 652.	3.3	23
13	Fungal Transformation of Tree Stumps into a Suitable Resource for Xylophagous Beetles via Changes in Elemental Ratios. Insects, 2016, 7, 13.	2.2	21
14	Sedentary antlion larvae (Neuroptera: Myrmeleontidae) use vibrational cues to modify their foraging strategies. Animal Cognition, 2016, 19, 1037-1041.	1.8	18
15	Ants Co-Occurring with Predatory Antlions Show Unsuccessful Rescue Behavior towards Captured Nestmates. Journal of Insect Behavior, 2020, 33, 1-6.	0.7	17
16	Predation Cues in Solitary bee Nests. Journal of Insect Behavior, 2017, 30, 385-393.	0.7	6
17	Phenology and production of pollen, nectar, and sugar in 1612 plant species from various environments. Ecology, 2022, 103, e3705.	3.2	6
18	Ratios rather than concentrations of nutritionally important elements may shape honey bee preferences for â€~dirty water'. Ecological Entomology, 2021, 46, 1236-1240.	2.2	4

MichaÅ, Filipiak

 #	Article	IF	CITATIONS
19	Sexual Dimorphism in the Multielemental Stoichiometric Phenotypes and Stoichiometric Niches of Spiders. Insects, 2020, 11, 484.	2.2	2