Alka Yadav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11672411/publications.pdf Version: 2024-02-01

Δικά Υλόλυ

#	Article	IF	CITATIONS
1	Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 2009, 27, 76-83.	11.7	4,723
2	Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Applied Microbiology and Biotechnology, 2011, 90, 1609-1624.	3.6	422
3	CRC 675—Current Trends in Phytosynthesis of Metal Nanoparticles. Critical Reviews in Biotechnology, 2008, 28, 277-284.	9.0	216
4	Strategic role of selected noble metal nanoparticles in medicine. Critical Reviews in Microbiology, 2016, 42, 1-24.	6.1	167
5	Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnology Letters, 2015, 37, 2099-2120.	2.2	153
6	Plants as potential synthesiser of precious metal nanoparticles: progress and prospects. IET Nanobiotechnology, 2013, 7, 117-124.	3.8	108
7	Biofabrication of Silver Nanoparticles by Opuntia ficus-indica: In vitro Antibacterial Activity and Study of the Mechanism Involved in the Synthesis. Current Nanoscience, 2010, 6, 370-375.	1.2	99
8	Potential applications of curcumin and curcumin nanoparticles: from traditional therapeutics to modern nanomedicine. Nanotechnology Reviews, 2015, 4, 161-172.	5.8	60
9	Nanotechnology as a Shield against COVID-19: Current Advancement and Limitations. Viruses, 2021, 13, 1224.	3.3	42
10	Biogenic Silver Nanoparticles: What We Know and What Do We Need to Know?. Nanomaterials, 2021, 11, 2901.	4.1	38
11	Biogenic Nanoparticles: An Introduction to What They Are, How They Are Synthesized and Their Applications. , 2011, , 1-14.		37
12	Nanotechnology-based promising strategies for the management of COVID-19: current development and constraints. Expert Review of Anti-Infective Therapy, 2022, 20, 1299-1308.	4.4	28
13	Preparation of an agarâ€silver nanoparticles (Aâ€AgNp) film for increasing the shelfâ€life of fruits. IET Nanobiotechnology, 2014, 8, 190-195.	3.8	25
14	Bioreduction and Mechanistic Aspects Involved in the Synthesis of Silver Nanoparticles Using <l>Holarrhena antidysenterica</l> . Journal of Bionanoscience, 2011, 5, 70-73.	0.4	12
15	Nanotechnology as a Promising Approach for Detection, Diagnosis and Treatment of Food Allergens. Current Nanoscience, 2022, 18, .	1.2	3
16	Phytosynthesis of Metal Nanoparticles. , 2015, , 259-269.		2
17	Potential applications of curcumin and curcumin nanoparticles: from traditional therapeutics to modern nanomedicine. Nanotechnology Reviews, 2015, .	5.8	2
18	Nanotechnological applications in old and emerging viral infections: Opportunities and challenges. , 2022, , 1-12.		0