## An-An Wu

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/116724/publications.pdf Version: 2024-02-01



ΔΝ-ΔΝΙ \λ/Π

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Atomically Dispersed Pt on the Surface of Ni Particles: Synthesis and Catalytic Function in Hydrogen<br>Generation from Aqueous Ammonia–Borane. ACS Catalysis, 2017, 7, 6762-6769.                   | 11.2 | 169       |
| 2  | OPBE: A promising density functional for the calculation of nuclear shielding constants. Chemical Physics Letters, 2006, 421, 383-388.                                                               | 2.6  | 120       |
| 3  | Lithium Imide Synergy with 3d Transitionâ€Metal Nitrides Leading to Unprecedented Catalytic Activities<br>for Ammonia Decomposition. Angewandte Chemie - International Edition, 2015, 54, 2950-2954. | 13.8 | 76        |
| 4  | Geometric Dependence of the B3LYP-Predicted Magnetic Shieldings and Chemical Shifts. Journal of Physical Chemistry A, 2007, 111, 9431-9437.                                                          | 2.5  | 70        |
| 5  | Systematic studies on the computation of nuclear magnetic resonance shielding constants and chemical shifts: The density functional models. Journal of Computational Chemistry, 2007, 28, 2431-2442. | 3.3  | 68        |
| 6  | XO: An extended ONIOM method for accurate and efficient geometry optimization of large molecules.<br>Chemical Physics Letters, 2010, 498, 203-208.                                                   | 2.6  | 60        |
| 7  | Single-handed supramolecular double helix of homochiral bis(N-amidothiourea) supported by double<br>crossed Câ^'l···S halogen bonds. Nature Communications, 2019, 10, 3610.                          | 12.8 | 55        |
| 8  | Efficient algorithm for the spin-free valence bond theory. I. New strategy and primary expressions.<br>International Journal of Quantum Chemistry, 1998, 67, 287-297.                                | 2.0  | 47        |
| 9  | XO: An extended ONIOM method for accurate and efficient modeling of large systems. Journal of Computational Chemistry, 2012, 33, 2142-2160.                                                          | 3.3  | 42        |
| 10 | Highly Enantioselective Henry Reactions of Aromatic Aldehydes Catalyzed by an Amino<br>Alcohol–Copper(II) Complex. Chemistry - A European Journal, 2012, 18, 10515-10518.                            | 3.3  | 40        |
| 11 | Two new spirooxindole alkaloids from rhizosphere strain Streptomyces sp. xzqh-9. Bioorganic and<br>Medicinal Chemistry Letters, 2014, 24, 4995-4998.                                                 | 2.2  | 26        |
| 12 | Aspertetranones A–D, Putative Meroterpenoids from the Marine Algal-Associated Fungus<br><i>Aspergillus</i> sp. ZLO-1b14. Journal of Natural Products, 2015, 78, 2405-2410.                           | 3.0  | 25        |
| 13 | Reversible Hydrogen Uptake/Release over a Sodium Phenoxide–Cyclohexanolate Pair. Angewandte<br>Chemie - International Edition, 2019, 58, 3102-3107.                                                  | 13.8 | 23        |
| 14 | Synergizing Surface Hydride Species and Ru Clusters on Sm <sub>2</sub> O <sub>3</sub> for Efficient<br>Ammonia Synthesis. ACS Catalysis, 2022, 12, 2178-2190.                                        | 11.2 | 23        |
| 15 | Metallo-N-Heterocycles - A new family of hydrogen storage material. Energy Storage Materials, 2020,<br>26, 198-202.                                                                                  | 18.0 | 22        |
| 16 | Accurate prediction of nuclear magnetic resonance shielding constants: Towards the accuracy of CCSD(T) complete basis set limit. Journal of Chemical Physics, 2013, 138, 124113.                     | 3.0  | 20        |
| 17 | Enabling Semihydrogenation of Alkynes to Alkenes by Using a Calcium Palladium Complex Hydride.<br>Journal of the American Chemical Society, 2021, 143, 20891-20897.                                  | 13.7 | 20        |
| 18 | Barium chromium nitride-hydride for ammonia synthesis. Chem Catalysis, 2021, 1, 1042-1054.                                                                                                           | 6.1  | 19        |

An-An Wu

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | New 12,8-Eudesmanolides from Eutypella sp. 1–15. Journal of Antibiotics, 2017, 70, 1029-1032.                                                                                                                                                                                    | 2.0 | 13        |
| 20 | Pharmacological Targeting of Vacuolar H+-ATPase via Subunit V1G Combats Multidrug-Resistant<br>Cancer. Cell Chemical Biology, 2020, 27, 1359-1370.e8.                                                                                                                            | 5.2 | 13        |
| 21 | Developing Ideal Metalorganic Hydrides for Hydrogen Storage: From Theoretical Prediction to Rational Fabrication. , 2021, 3, 1417-1425.                                                                                                                                          |     | 13        |
| 22 | Accessing 2â€Arylbenzofurans by Cu <sup>I</sup> <sub>2</sub> (pip) <sub>2</sub> atalyzed Tandem<br>Coupling/Cyclization Reaction: Mechanistic Studies and Application to the Synthesis of Stemofuran A<br>and Moracin M. Asian Journal of Organic Chemistry, 2016, 5, 1345-1352. | 2.7 | 12        |
| 23 | Metathesis of alkali-metal amidoborane and FeCl3 in THF. Journal of Materials Chemistry, 2012, 22, 7478.                                                                                                                                                                         | 6.7 | 11        |
| 24 | X-ray and DFT Study of Glaucocalyxin A Compound with Cytotoxic Activity. Chinese Journal of Chemical Physics, 2009, 22, 275-284.                                                                                                                                                 | 1.3 | 8         |
| 25 | Theoretical Studies on Dehydrogenation Reactions in Mg2(BH4)2(NH2)2 Compounds. Chinese Journal of Chemical Physics, 2012, 25, 676-680.                                                                                                                                           | 1.3 | 8         |
| 26 | Auto-classification of biomass through characterization of their pyrolysis behaviors using<br>thermogravimetric analysis with support vector machine algorithm: case study for tobacco.<br>Biotechnology for Biofuels, 2021, 14, 106.                                            | 6.2 | 8         |
| 27 | Assessment of Some Density Functional Theory Methods and Force Field Models in Describing Various<br>Interaction Modes of Benzene Dimer. Chinese Journal of Chemical Physics, 2011, 24, 635-639.                                                                                 | 1.3 | 7         |
| 28 | xOPBE: A Specialized Functional for Accurate Prediction of 13C Chemical Shifts. Journal of Physical Chemistry A, 2020, 124, 5824-5831.                                                                                                                                           | 2.5 | 7         |
| 29 | Sodium anilinide–cyclohexylamide pair: synthesis, characterization, and hydrogen storage properties.<br>Chemical Communications, 2020, 56, 1944-1947.                                                                                                                            | 4.1 | 7         |
| 30 | Fluorescence of a triple-stranded helicate iron( <scp>iii</scp> ) complex from a novel bis-β-diketone<br>ligand: synthesis, structure and spectroscopic studies. CrystEngComm, 2016, 18, 6624-6631.                                                                              | 2.6 | 6         |
| 31 | The new chemical insight for understanding the mechanism of Henry reaction over Cu(II) catalyst.<br>Chemical Physics Letters, 2017, 673, 7-10.                                                                                                                                   | 2.6 | 6         |
| 32 | Reversible Hydrogen Uptake/Release over a Sodium Phenoxide–Cyclohexanolate Pair. Angewandte<br>Chemie, 2019, 131, 3134-3139.                                                                                                                                                     | 2.0 | 6         |
| 33 | Biosynthesis and Chemical Diversification of Verucopeptin Leads to Structural and Functional Versatility. Organic Letters, 2020, 22, 4366-4371.                                                                                                                                  | 4.6 | 6         |
| 34 | EPR and DFT Study of the Polycyclic Aromatic Radical Cations from Friedel-Crafts Alkylation Reactions. Chinese Journal of Chemical Physics, 2009, 22, 51-56.                                                                                                                     | 1.3 | 5         |
| 35 | Insights into the Mechanism of Metal-Catalyzed Transformation of Oxime Esters: Metal-Bound Radical<br>Pathway vs Free Radical Pathway. Journal of Organic Chemistry, 2022, 87, 6014-6024.                                                                                        | 3.2 | 5         |
| 36 | DCMB that combines divideâ€endâ€conquer and mixedâ€basis set methods for accurate geometry optimizations, total energies, and vibrational frequencies of large molecules. Journal of Computational Chemistry, 2012, 33, 1421-1432.                                               | 3.3 | 4         |

An-An Wu

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Accurate prediction of nuclear magnetic resonance shielding constants: An extension of the<br>focal-point analysis method for magnetic parameter calculations (FPA-M) with improved efficiency.<br>Journal of Chemical Physics, 2018, 149, 184101. | 3.0 | 3         |
| 38 | Chemoselectivity in Gold(I)-Catalyzed Propargyl Ester Reactions: Insights From DFT Calculations.<br>Frontiers in Chemistry, 2019, 7, 609.                                                                                                          | 3.6 | 3         |
| 39 | Metalâ€catalyzed alkyne oxidation/C  H functionalization: Effects of oxidant, temperature, and metal catalyst on chemoselectivity. Journal of Computational Chemistry, 2019, 40, 1038-1044.                                                       | 3.3 | 2         |
| 40 | Insights into the mechanism of fatty acid photodecarboxylase: A theoretical investigation. Chemical Physics Letters, 2021, 771, 138550.                                                                                                            | 2.6 | 2         |
| 41 | Rücktitelbild: Reversible Hydrogen Uptake/Release over a Sodium Phenoxide–Cyclohexanolate Pair<br>(Angew. Chem. 10/2019). Angewandte Chemie, 2019, 131, 3262-3262.                                                                                 | 2.0 | 0         |