Donato A G Aranda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11670657/publications.pdf

Version: 2024-02-01

933447 1125743 13 547 10 13 citations h-index g-index papers 13 13 13 807 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids. Catalysis Letters, 2008, 122, 20-25.	2.6	233
2	The use of acids, niobium oxide, and zeolite catalysts for esterification reactions. Journal of Physical Organic Chemistry, 2009, 22, 709-716.	1.9	74
3	Biocatalysts based on nanozeolite-enzyme complexes: Effects of alkoxysilane surface functionalization and biofuel production using microalgae lipids feedstock. Colloids and Surfaces B: Biointerfaces, 2018, 165, 150-157.	5.0	47
4	Density Functional Theory Study of Benzene Adsorption on Small Pd and Pt Clusters. Journal of Physical Chemistry C, 2007, 111, 11068-11076.	3.1	35
5	Kinetic study of thermal processing of glycerol by thermogravimetry. Journal of Thermal Analysis and Calorimetry, 2011, 105, 737-746.	3.6	31
6	Niobium oxide solid catalyst: esterification of fatty acids and modeling for biodiesel production. Journal of Physical Organic Chemistry, 2011, 24, 54-64.	1.9	27
7	Computer Simulation of Fatty Acid Esterification in Reactive Distillation Columns. Industrial & Computer Simulation of Fatty Acid Esterification in Reactive Distillation Columns. Industrial & Computer Simulation of Fatty Acid Esterification in Reactive Distillation Columns. Industrial & Computer Simulation of Fatty Acid Esterification in Reactive Distillation Columns. Industrial & Computer Simulation of Fatty Acid Esterification in Reactive Distillation Columns. Industrial & Computer Simulation of Fatty Acid Esterification in Reactive Distillation Columns. Industrial & Computer Simulation of Fatty Acid Esterification in Reactive Distillation Columns. Industrial & Computer Simulation of Fatty Acid Esterification in Reactive Distillation Columns. Industrial & Computer Simulation of Fatty Acid Esterification in Reactive Distillation Columns. Industrial & Computer Simulation of Fatty Acid Esterification in Reactive Distillation Columns. Industrial & Computer Simulation of Fatty Acid Esterification in Reactive Distillation of Fatty Acid Esterification in Reactive	3.7	26
8	Biodiesel Production by Esterification of Hydrolyzed Soybean Oil with Ethanol in Reactive Distillation Columns: Simulation Studies. Industrial & Engineering Chemistry Research, 2013, 52, 9461-9469.	3.7	24
9	Experimental and theoretical studies on glucose hydrogenation to produce sorbitol. Reaction Kinetics and Catalysis Letters, 2007, 91, 341-352.	0.6	13
10	Modeling the Adsorption of CO on Small Pt, Fe and Co Clusters for the Fischer–Tropsch Synthesis. Journal of Cluster Science, 2008, 19, 601-614.	3.3	12
11	Polyol Synthesis of Cobalt–Copper Alloy Catalysts for Higher Alcohol Synthesis from Syngas. Catalysis Letters, 2017, 147, 2352-2359.	2.6	10
12	The carbon isotopic (13C/12C) signature of sugarcane bioethanol: certifying the major source of renewable fuel from Brazil. Analytical Methods, 2015, 7, 4780-4785.	2.7	8
13	The influence of different referencing methods on the accuracy of δ ¹³ C value measurement of ethanol fuel by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29, 1938-1946.	1.5	7