Tinghu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11669899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 2012, 483, 570-575.	27.8	2,173
2	A Landscape of Pharmacogenomic Interactions in Cancer. Cell, 2016, 166, 740-754.	28.9	1,518
3	Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature, 2014, 511, 616-620.	27.8	698
4	Developing Irreversible Inhibitors of the Protein Kinase Cysteinome. Chemistry and Biology, 2013, 20, 146-159.	6.0	563
5	CDK7 Inhibition Suppresses Super-Enhancer-Linked Oncogenic Transcription in MYCN-Driven Cancer. Cell, 2014, 159, 1126-1139.	28.9	498
6	Plasticity in binding confers selectivity in ligand-induced protein degradation. Nature Chemical Biology, 2018, 14, 706-714.	8.0	391
7	Targeting Transcriptional Addictions in Small Cell Lung Cancer with a Covalent CDK7 Inhibitor. Cancer Cell, 2014, 26, 909-922.	16.8	376
8	Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nature Chemical Biology, 2018, 14, 163-170.	8.0	376
9	CDK7-Dependent Transcriptional Addiction in Triple-Negative Breast Cancer. Cell, 2015, 163, 174-186.	28.9	346
10	Discovery of Potent and Selective Covalent Inhibitors of JNK. Chemistry and Biology, 2012, 19, 140-154.	6.0	286
11	Partitioning of cancer therapeutics in nuclear condensates. Science, 2020, 368, 1386-1392.	12.6	281
12	Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway. Cancer Cell, 2020, 37, 104-122.e12.	16.8	267
13	Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nature Chemical Biology, 2016, 12, 876-884.	8.0	249
14	YAP Drives Growth by Controlling Transcriptional Pause Release from Dynamic Enhancers. Molecular Cell, 2015, 60, 328-337.	9.7	228
15	A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging. Cell, 2020, 180, 968-983.e24.	28.9	220
16	Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations. Cancer Cell, 2018, 33, 173-186.e5.	16.8	201
17	Homolog-Selective Degradation as a Strategy to Probe the Function of CDK6 in AML. Cell Chemical Biology, 2019, 26, 300-306.e9.	5.2	188
18	Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. ELife, 2019, 8, .	6.0	184

TINGHU ZHANG

#	Article	IF	CITATIONS
19	Development of Dual and Selective Degraders of Cyclinâ€Dependent Kinases 4 and 6. Angewandte Chemie - International Edition, 2019, 58, 6321-6326.	13.8	179
20	CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. Nature Communications, 2019, 10, 1757.	12.8	159
21	Light-induced control of protein destruction by opto-PROTAC. Science Advances, 2020, 6, eaay5154.	10.3	139
22	CDK7 Inhibition Potentiates Genome Instability Triggering Anti-tumor Immunity in Small Cell Lung Cancer. Cancer Cell, 2020, 37, 37-54.e9.	16.8	138
23	Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nature Chemical Biology, 2020, 16, 7-14.	8.0	136
24	Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nature Communications, 2019, 10, 3468.	12.8	124
25	Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nature Medicine, 2019, 25, 292-300.	30.7	120
26	EWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma. Cancer Cell, 2018, 33, 202-216.e6.	16.8	116
27	Recent Advances in Selective and Irreversible Covalent Ligand Development and Validation. Cell Chemical Biology, 2019, 26, 1486-1500.	5.2	110
28	Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13. ELife, 2018, 7, .	6.0	109
29	Development of a Selective CDK7 Covalent Inhibitor Reveals Predominant Cell-Cycle Phenotype. Cell Chemical Biology, 2019, 26, 792-803.e10.	5.2	103
30	Suppression of Adaptive Responses to Targeted Cancer Therapy by Transcriptional Repression. Cancer Discovery, 2018, 8, 59-73.	9.4	96
31	SRPKIN-1: A Covalent SRPK1/2 Inhibitor that Potently Converts VEGF from Pro-angiogenic to Anti-angiogenic Isoform. Cell Chemical Biology, 2018, 25, 460-470.e6.	5.2	95
32	MELK is not necessary for the proliferation of basal-like breast cancer cells. ELife, 2017, 6, .	6.0	86
33	Systematic analysis of <scp>BRAF^V</scp> ^{600E} melanomas reveals a role for <scp>JNK</scp> /câ€Jun pathway in adaptive resistance to drugâ€induced apoptosis. Molecular Systems Biology, 2015, 11, 797.	7.2	84
34	THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nature Communications, 2017, 8, 14290.	12.8	74
35	The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Biochemical Journal, 2017, 474, 2027-2038.	3.7	69
36	Discovery and resistance mechanism of a selective CDK12 degrader. Nature Chemical Biology, 2021, 17, 675-683.	8.0	69

Tinghu Zhang

#	Article	IF	CITATIONS
37	Enhancer profiling identifies critical cancer genes and characterizes cell identity in adult T-cell leukemia. Blood, 2017, 130, 2326-2338.	1.4	66
38	Activation of the p53 Transcriptional Program Sensitizes Cancer Cells to Cdk7 Inhibitors. Cell Reports, 2017, 21, 467-481.	6.4	65
39	A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification. Journal of the American Chemical Society, 2019, 141, 191-203.	13.7	65
40	Fragment-based covalent ligand discovery. RSC Chemical Biology, 2021, 2, 354-367.	4.1	65
41	Overcoming Resistance to the THZ Series of Covalent Transcriptional CDK Inhibitors. Cell Chemical Biology, 2018, 25, 135-142.e5.	5.2	58
42	BCL2 Amplicon Loss and Transcriptional Remodeling Drives ABT-199 Resistance in B Cell Lymphoma Models. Cancer Cell, 2019, 35, 752-766.e9.	16.8	56
43	Functional Genomics Identify Distinct and Overlapping Genes Mediating Resistance to Different Classes of Heterobifunctional Degraders of Oncoproteins. Cell Reports, 2021, 34, 108532.	6.4	54
44	Development of CDK2 and CDK5 Dual Degrader TMXâ€⊋172. Angewandte Chemie - International Edition, 2020, 59, 13865-13870.	13.8	47
45	High MITF Expression Is Associated with Super-Enhancers and Suppressed by CDK7 Inhibition in Melanoma. Journal of Investigative Dermatology, 2018, 138, 1582-1590.	0.7	46
46	Selective Degradation of GSPT1 by Cereblon Modulators Identified via a Focused Combinatorial Library. ACS Chemical Biology, 2020, 15, 2722-2730.	3.4	46
47	Targeting the PI5P4K Lipid Kinase Family in Cancer Using Covalent Inhibitors. Cell Chemical Biology, 2020, 27, 525-537.e6.	5.2	36
48	A kinase-independent role for CDK8 in BCR-ABL1+ leukemia. Nature Communications, 2019, 10, 4741.	12.8	33
49	Leveraging Gas-Phase Fragmentation Pathways for Improved Identification and Selective Detection of Targets Modified by Covalent Probes. Analytical Chemistry, 2016, 88, 12248-12254.	6.5	31
50	Structure-Based Design of a Potent and Selective Covalent Inhibitor for SRC Kinase That Targets a P-Loop Cysteine. Journal of Medicinal Chemistry, 2020, 63, 1624-1641.	6.4	27
51	Structure-activity relationship study of THZ531 derivatives enables the discovery of BSJ-01-175 as a dual CDK12/13 covalent inhibitor with efficacy in Ewing sarcoma. European Journal of Medicinal Chemistry, 2021, 221, 113481.	5.5	27
52	Novel Scaffolds for Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase (DYRK1A) Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 7560-7572.	6.4	26
53	Targeting oncoproteins with a positive selection assay for protein degraders. Science Advances, 2021, 7, .	10.3	26
54	Discovery of a Potent Degrader for Fibroblast Growth Factor Receptor 1/2. Angewandte Chemie - International Edition, 2021, 60, 15905-15911.	13.8	25

TINGHU ZHANG

#	Article	IF	CITATIONS
55	Discovery of MFH290: A Potent and Highly Selective Covalent Inhibitor for Cyclin-Dependent Kinase 12/13. Journal of Medicinal Chemistry, 2020, 63, 6708-6726.	6.4	23
56	Rationally Designed Covalent BCL6 Inhibitor That Targets a Tyrosine Residue in the Homodimer Interface. ACS Medicinal Chemistry Letters, 2020, 11, 1269-1273.	2.8	22
57	Tumors with TSC mutations are sensitive to CDK7 inhibition through NRF2 and glutathione depletion. Journal of Experimental Medicine, 2019, 216, 2635-2652.	8.5	20
58	PRM-LIVE with Trapped Ion Mobility Spectrometry and Its Application in Selectivity Profiling of Kinase Inhibitors. Analytical Chemistry, 2021, 93, 13791-13799.	6.5	20
59	Structure and Characterization of a Covalent Inhibitor of Src Kinase. Frontiers in Molecular Biosciences, 2020, 7, 81.	3.5	17
60	Discovery and Structure–Activity Relationship Study of (<i>Z</i>)-5-Methylenethiazolidin-4-one Derivatives as Potent and Selective Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 4880-4895.	6.4	17
61	Selective degradation-inducing probes for studying cereblon (CRBN) biology. RSC Medicinal Chemistry, 2021, 12, 1381-1390.	3.9	17
62	Discovery of a Series of 5,11-Dihydro-6 <i>H</i> -benzo[<i>e</i>]pyrimido[5,4- <i>b</i>][1,4]diazepin-6-ones as Selective PI3K-δ/γ Inhibitors. ACS Medicinal Chemistry Letters, 2016, 7, 908-912.	2.8	15
63	Development of PDE6D and CK1α Degraders through Chemical Derivatization of FPFT-2216. Journal of Medicinal Chemistry, 2022, 65, 747-756.	6.4	15
64	Structure–Activity Relationship Study of Covalent Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 346-352.	2.8	14
65	JNK2 Is Required for the Tumorigenic Properties of Melanoma Cells. ACS Chemical Biology, 2019, 14, 1426-1435.	3.4	12
66	Development of Dual and Selective Degraders of Cyclinâ€Dependent Kinases 4 and 6. Angewandte Chemie, 2019, 131, 6387-6392.	2.0	11
67	Inhibition of IKKα by BAY61-3606 Reveals IKKα-Dependent Histone H3 Phosphorylation in Human Cytomegalovirus Infected Cells. PLoS ONE, 2016, 11, e0150339.	2.5	11
68	Synergistic Anti-Tumor Effect of Combining Selective CDK7 and BRD4 Inhibition in Neuroblastoma. Frontiers in Oncology, 2021, 11, 773186.	2.8	11
69	Discovery of Covalent MKK4/7 Dual Inhibitor. Cell Chemical Biology, 2020, 27, 1553-1560.e8.	5.2	10
70	Discovery of a Potent Degrader for Fibroblast Growth Factor Receptor 1/2. Angewandte Chemie, 2021, 133, 16041-16047.	2.0	5
71	Exploring Ligand-Directed <i>N</i> -Acyl- <i>N</i> -alkylsulfonamide-Based Acylation Chemistry for Potential Targeted Degrader Development. ACS Medicinal Chemistry Letters, 2021, 12, 1302-1307.	2.8	5
72	A preclinical platform for assessing antitumor effects and systemic toxicities of cancer drug targets. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110557119.	7.1	5

TINGHU ZHANG

#	Article	IF	CITATIONS
73	Synthesis and Structure–Activity relationships of cyclin-dependent kinase 11 inhibitors based on a diaminothiazole scaffold. European Journal of Medicinal Chemistry, 2022, 238, 114433.	5.5	3
74	Development of CDK2 and CDK5 Dual Degrader TMXâ€2172. Angewandte Chemie, 2020, 132, 13969-13974.	2.0	2
75	Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of <i>ESR1</i> Activating Mutations. SSRN Electronic Journal, 0, , .	0.4	Ο
76	CRISPR-Based Functional Genomics Studies Reveal Distinct and Overlapping Genes Mediating Resistance to Different Classes of Heterobifunctional Degraders of Oncoproteins: Implications for Novel	1.4	0

Therapeutics across Diverse Neoplasias. Blood, 2018, 132, 1367-1367.