List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11669593/publications.pdf Version: 2024-02-01

LOPCE EL COELHO

#	Article	IF	CITATIONS
1	Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polymer Chemistry, 2015, 6, 5961-5983.	3.9	531
2	The quest for sustainable polyesters – insights into the future. Polymer Chemistry, 2014, 5, 3119-3141.	3.9	438
3	Oral films: Current status and future perspectives. Journal of Controlled Release, 2015, 206, 1-19.	9.9	223
4	Recent Developments in Antimicrobial Polymers: A Review. Materials, 2016, 9, 599.	2.9	153
5	Non-transition metal-catalyzed living radical polymerization of vinyl chloride initiated with iodoform in water at 25 ŰC. Journal of Polymer Science Part A, 2004, 42, 6267-6282.	2.3	112
6	Inorganic Sulfites: Efficient Reducing Agents and Supplemental Activators for Atom Transfer Radical Polymerization. ACS Macro Letters, 2012, 1, 1308-1311.	4.8	95
7	A New Generation of Furanic Copolyesters with Enhanced Degradability: Poly(ethylene) Tj ETQq1 1 0.784314 rgBT Physics, 2014, 215, 2175-2184.	T /Overlock 2.2	t 10 Tf 50 5 92
8	Near infrared light-triggered nanoparticles using singlet oxygen photocleavage for drug delivery systems. Journal of Controlled Release, 2019, 294, 337-354.	9.9	77
9	Deep Eutectic Solvent Aqueous Solutions as Efficient Media for the Solubilization of Hardwood Xylans. ChemSusChem, 2018, 11, 753-762.	6.8	75
10	Ambient temperature rapid SARA ATRP of acrylates and methacrylates in alcohol–water solutions mediated by a mixed sulfite/Cu(ii)Br2 catalytic system. Polymer Chemistry, 2013, 4, 5629.	3.9	70
11	Synthesis of well-defined poly(2-(dimethylamino)ethyl methacrylate) under mild conditions and its co-polymers with cholesterol and PEG using Fe(0)/Cu(ii) based SARA ATRP. Polymer Chemistry, 2013, 4, 3088.	3.9	67
12	Poly(β-amino ester)-based gene delivery systems: From discovery to therapeutic applications. Journal of Controlled Release, 2019, 310, 155-187.	9.9	66
13	Cinnamic acid derivatives as promising building blocks for advanced polymers: synthesis, properties and applications. Polymer Chemistry, 2019, 10, 1696-1723.	3.9	66
14	Copperâ€Mediated Controlled/"Living―Radical Polymerization in Polar Solvents: Insights into Some Relevant Mechanistic Aspects. Chemistry - A European Journal, 2012, 18, 4607-4612.	3.3	64
15	Synthesis of poly(vinyl chloride)-b-poly(n-butyl acrylate)-b-poly(vinyl chloride) by the competitive single-electron-transfer/degenerative-chain-transfer-mediated living radical polymerization in water. Journal of Polymer Science Part A, 2006, 44, 3001-3008.	2.3	63
16	Reversible Addition–Fragmentation Chain Transfer Polymerization of Vinyl Chloride. Macromolecules, 2012, 45, 2200-2208.	4.8	61
17	Oral films: Current status and future perspectives II — Intellectual property, technologies and market needs. Journal of Controlled Release, 2015, 206, 108-121.	9.9	55
18	Polyacrylonitrile- <i>b</i> -poly(butyl acrylate) Block Copolymers as Precursors to Mesoporous Nitrogen-Doped Carbons: Synthesis and Nanostructure. Macromolecules, 2017, 50, 2759-2767.	4.8	53

#	Article	lF	CITATIONS
19	Single electron transfer–degenerative chain transfer living radical polymerization of N-butyl acrylate catalyzed by Na2S2O4 in water media. Journal of Polymer Science Part A, 2006, 44, 2809-2825.	2.3	51
20	Brief Overview on Bio-Based Adhesives and Sealants. Polymers, 2019, 11, 1685.	4.5	49
21	Mucoadhesive oral films: The potential for unmet needs. International Journal of Pharmaceutics, 2015, 494, 537-551.	5.2	48
22	Novel flexible, hybrid aerogels with vinyl- and methyltrimethoxysilane in the underlying silica structure. Journal of Materials Science, 2016, 51, 6781-6792.	3.7	48
23	Aqueous SARA ATRP using inorganic sulfites. Polymer Chemistry, 2017, 8, 375-387.	3.9	45
24	Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot. Advances in Colloid and Interface Science, 2017, 249, 163-180.	14.7	44
25	Untethered Disposable Health Monitoring Electronic Patches with an Integrated Ag ₂ O–Zn Battery, a AgInGa Current Collector, and Hydrogel Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 3407-3414.	8.0	43
26	High Resolution Soft and Stretchable Circuits with PVA/Liquidâ€Metal Mediated Printing. Advanced Materials Technologies, 2020, 5, 2000343.	5.8	42
27	Single electron transfer-degenerative chain transfer mediated living radical polymerization (SET-DTLRP) of vinyl chloride initiated with methylene iodide and catalyzed by sodium dithionite. Journal of Polymer Science Part A, 2005, 43, 773-778.	2.3	41
28	Synthesis of cationic poly((3-acrylamidopropyl)trimethylammonium chloride) by SARA ATRP in ecofriendly solvent mixtures. Polymer Chemistry, 2014, 5, 5829-5836.	3.9	41
29	Synthesis of Poly(lauryl acrylate) by Single-Electron Transfer/Degenerative Chain Transfer Living Radical Polymerization Catalyzed by Na2S2O4 in Water. Macromolecular Chemistry and Physics, 2007, 208, 1218-1227.	2.2	40
30	The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(lµ-caprolactone) scaffolds. Materials Science and Engineering C, 2019, 98, 994-1004.	7.3	40
31	Phase transfer catalyzed single electron transfer-degenerative chain transfer mediated living radical polymerization (PTC-SET-DTLRP) of vinyl chloride catalyzed by sodium dithionite and initiated with iodoform in water at 43 ŰC. Journal of Polymer Science Part A, 2005, 43, 779-788.	2.3	39
32	Accelerated synthesis of poly(methyl methacrylate)-b-poly(vinyl chloride)-b-poly(methyl methacrylate) block copolymers by the CuCl/tris(2-dimethylaminoethyl)amine-catalyzed living radical block copolymerization of methyl methacrylate initiated with ?,?-di(iodo)poly(vinyl chloride) in dimethyl sulfoxide at 90 ï;½2C. Journal of Polymer Science Part A, 2005, 43, 1649-1659.	2.3	39
33	Straightforward ARGET ATRP for the Synthesis of Primary Amine Polymethacrylate with Improved Chain-End Functionality under Mild Reaction Conditions. Macromolecules, 2014, 47, 4615-4621.	4.8	39
34	Influence of the isomeric structures of butyl acrylate on its singleâ€electron transferâ€degenerative chain transfer living radical polymerization in water Catalyzed by Na ₂ S ₂ O ₄ . Journal of Polymer Science Part A, 2008, 46, 6542-6551.	2.3	38
35	Increasing the Antimicrobial Activity of Amphiphilic Cationic Copolymers by the Facile Synthesis of High Molecular Weight Stars by Supplemental Activator and Reducing Agent Atom Transfer Radical Polymerization. Biomacromolecules, 2019, 20, 1146-1156.	5.4	38
36	Sulfolane: an Efficient and Universal Solvent for Copper-Mediated Atom Transfer Radical (co)Polymerization of Acrylates, Methacrylates, Styrene, and Vinyl Chloride. ACS Macro Letters, 2014, 3. 858-861.	4.8	37

#	Article	IF	CITATIONS
37	Synthesis of well-defined functionalized poly(2-(diisopropylamino)ethyl methacrylate) using ATRP with sodium dithionite as a SARA agent. Polymer Chemistry, 2014, 5, 3919-3928.	3.9	36
38	Accelerated Ambientâ€Temperature ATRP of Methyl Acrylate in Alcohol–Water Solutions with a Mixed Transitionâ€Metal Catalyst System. Macromolecular Chemistry and Physics, 2012, 213, 1677-1687.	2.2	34
39	Nitroxide-Mediated Polymerization of Vinyl Chloride at Low Temperature: Kinetic and Computational Studies. Macromolecules, 2016, 49, 490-498.	4.8	34
40	Use of recycled polypropylene/poly(ethylene terephthalate) blends to manufacture water pipes: An industrial scale study. Waste Management, 2020, 101, 250-258.	7.4	34
41	Getting faster: low temperature copper-mediated SARA ATRP of methacrylates, acrylates, styrene and vinyl chloride in polar media using sulfolane/water mixtures. RSC Advances, 2016, 6, 9598-9603.	3.6	33
42	Outlining critical quality attributes (CQAs) as guidance for the development of orodispersible films. Pharmaceutical Development and Technology, 2017, 22, 237-245.	2.4	31
43	Thiourea Dioxide As a Green and Affordable Reducing Agent for the ARGET ATRP of Acrylates, Methacrylates, Styrene, Acrylonitrile, and Vinyl Chloride. ACS Macro Letters, 2019, 8, 315-319.	4.8	31
44	Improvement of the control over SARA ATRP of 2-(diisopropylamino)ethyl methacrylate by slow and continuous addition of sodium dithionite. Polymer Chemistry, 2014, 5, 4617-4626.	3.9	30
45	High transfection efficiency promoted by tailor-made cationic tri-block copolymer-based nanoparticles. Acta Biomaterialia, 2017, 47, 113-123.	8.3	29
46	Synthesis of poly(2â€methoxyethyl acrylate) by single electron transfer—Degenerative transfer living radical polymerization catalyzed by Na ₂ S ₂ O ₄ in water. Journal of Polymer Science Part A, 2009, 47, 4454-4463.	2.3	28
47	Ambient Temperature Transition-Metal-Free Dissociative Electron Transfer Reversible Addition–Fragmentation Chain Transfer Polymerization (DET-RAFT) of Methacrylates, Acrylates, and Styrene. Macromolecules, 2016, 49, 1597-1604.	4.8	28
48	Facile Synthesis of Wellâ€Defined Telechelic Alkyneâ€Terminated Polystyrene in Polar Media Using ATRP With Mixed Fe/Cu Transition Metal Catalyst. Macromolecular Chemistry and Physics, 2013, 214, 76-84.	2.2	27
49	Cyclopentyl methyl ether: A new green coâ€solvent for supplemental activator and reducing agent atom transfer radical polymerization. Journal of Polymer Science Part A, 2015, 53, 2722-2729.	2.3	27
50	Synthesis of poly(ethyl acrylate) by single electron transferâ€degenerative chain transfer living radical polymerization in water catalyzed by Na ₂ S ₂ O ₄ . Journal of Polymer Science Part A, 2008, 46, 421-432.	2.3	26
51	Synergistic Effect of 1-Butyl-3-methylimidazolium Hexafluorophosphate and DMSO in the SARA ATRP at Room Temperature Affording Very Fast Reactions and Polymers with Very Low Dispersity. ACS Macro Letters, 2014, 3, 544-547.	4.8	26
52	Mechanism of supplemental activator and reducing agent atom transfer radical polymerization mediated by inorganic sulfites: experimental measurements and kinetic simulations. Polymer Chemistry, 2017, 8, 6506-6519.	3.9	25
53	Replacing Di(2-ethylhexyl) Terephthalate by Di(2-ethylhexyl) 2,5-Furandicarboxylate for PVC Plasticization: Synthesis, Materials Preparation and Characterization. Materials, 2019, 12, 2336.	2.9	25
54	Ambient Temperature "Flash―SARA ATRP of Methyl Acrylate in Water/Ionic Liquid/Glycol Mixtures. Macromolecules, 2015, 48, 6810-6815.	4.8	24

#	Article	IF	CITATIONS
55	Synthesis of functionalized poly(vinyl acetate) mediated by alkyne-terminated RAFT agents. RSC Advances, 2015, 5, 91225-91234.	3.6	23
56	The impact of a designed lactic acid-based crosslinker in the thermochemical properties of unsaturated polyester resins/nanoprecipitated calcium carbonate composites. Journal of Materials Science, 2017, 52, 1272-1284.	3.7	23
57	Synthesis of well-defined alkyne terminated poly(N-vinyl caprolactam) with stringent control over the LCST by RAFT. RSC Advances, 2016, 6, 16996-17007.	3.6	22
58	Surface functionalization of cuttlefish bone-derived biphasic calcium phosphate scaffolds with polymeric coatings. Materials Science and Engineering C, 2019, 105, 110014.	7.3	22
59	Cyclopentyl methyl ether as a green solvent for reversible-addition fragmentation chain transfer and nitroxide-mediated polymerizations. RSC Advances, 2016, 6, 7495-7503.	3.6	21
60	Combination of Poly[(2-dimethylamino)ethyl methacrylate] and Poly(β-amino ester) Results in a Strong and Synergistic Transfection Activity. Biomacromolecules, 2017, 18, 3331-3342.	5.4	21
61	Amphiphilic wellâ€defined degradable star block copolymers by combination of ringâ€opening polymerization and atom transfer radical polymerization: Synthesis and application as drug delivery carriers. Journal of Polymer Science, 2021, 59, 211-229.	3.8	21
62	Retrospective Quality by Design (rQbD) applied to the optimization of orodispersible films. International Journal of Pharmaceutics, 2017, 528, 655-663.	5.2	19
63	Pushing the limits of robust and eco-friendly ATRP processes: untreated water as the solvent. Polymer Chemistry, 2019, 10, 938-944.	3.9	18
64	Synthesis of high glass transition temperature copolymers based on poly(vinyl chloride) via single electron transfer—Degenerative chain transfer mediated living radical polymerization (SETâ€ĐTLRP) of vinyl chloride in water. Journal of Polymer Science Part A, 2009, 47, 7021-7031.	2.3	17
65	Novel Cationic Triblock Copolymer of Poly[2-(dimethylamino)ethyl methacrylate]- <i>block</i> -poly(l²-amino ester)- <i>block</i> -poly[2-(dimethylamino)ethyl methacrylate]: A Promising Non-Viral Gene Delivery System. Macromolecular Bioscience, 2015, 15, 215-228.	4.1	17
66	Eutectic mixtures as a green alternative for efficient catalyst recycling in atom transfer radical polymerizations. Journal of Polymer Science Part A, 2017, 55, 371-381.	2.3	17
67	Poly(ethylene glycol)- <i>block</i> -poly(2-aminoethyl methacrylate hydrochloride)-Based Polyplexes as Serum-Tolerant Nanosystems for Enhanced Gene Delivery. Molecular Pharmaceutics, 2019, 16, 2129-2141.	4.6	16
68	Liquid salts as eco-friendly solvents for atom transfer radical polymerization: a review. Polymer Chemistry, 2019, 10, 4904-4913.	3.9	15
69	Light-Activated Antimicrobial Surfaces Using Industrial Varnish Formulations to Mitigate the Incidence of Nosocomial Infections. ACS Applied Materials & Interfaces, 2021, 13, 7567-7579.	8.0	15
70	Thermal characterization of poly(vinyl chloride) samples prepared by living radical polymerization: Comparison with poly(vinyl chloride) prepared by free radical polymerization. Journal of Applied Polymer Science, 2008, 109, 2729-2736.	2.6	14
71	Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1391-1409.	3.5	14
72	Ambient temperature SARAATRP for meth(acrylates), styrene, and vinyl chloride using sulfolane/1-butyl-3-methylimidazolium hexafluorophosphate-based mixtures. Journal of Polymer Science Part A, 2017, 55, 1322-1328.	2.3	14

#	Article	IF	CITATIONS
73	Effect of in Vitro Enzymatic Degradation on 3D Printed Poly(Îμ-Caprolactone) Scaffolds: Morphological, Chemical and Mechanical Properties. Journal of Applied Biomaterials and Functional Materials, 2017, 15, 185-195.	1.6	14
74	Synthesis of tailor-made bile acid sequestrants by supplemental activator and reducing agent atom transfer radical polymerization. RSC Advances, 2016, 6, 52143-52153.	3.6	13
75	Development of electrospun mats based on hydrophobic hydroxypropyl cellulose derivatives. Materials Science and Engineering C, 2021, 131, 112498.	7.3	13
76	Polymerization of Vinyl Chloride at Ambient Temperature Using Macromolecular Design via the Interchange of Xanthate: Kinetic and Computational Studies. Macromolecules, 2020, 53, 190-202.	4.8	12
77	Room temperature aqueous self-assembly of poly(ethylene glycol)-poly(4-vinyl pyridine) block copolymers: From spherical to worm-like micelles. Colloids and Surfaces B: Biointerfaces, 2016, 145, 447-453.	5.0	11
78	Under pressure: electrochemically-mediated atom transfer radical polymerization of vinyl chloride. Polymer Chemistry, 2020, 11, 6745-6762.	3.9	11
79	Preparation of well-defined brush-like block copolymers for gene delivery applications under biorelevant reaction conditions. Colloids and Surfaces B: Biointerfaces, 2018, 169, 107-117.	5.0	9
80	Guanidine as inexpensive dual function ligand and reducing agent for ATRP of methacrylates. Polymer Chemistry, 2019, 10, 4944-4953.	3.9	9
81	Highly Porous Composite Scaffolds Endowed with Antibacterial Activity for Multifunctional Grafts in Bone Repair. Polymers, 2021, 13, 4378.	4.5	9
82	Poly(ester amide)s based on l-lactic acid oligomers and glycine: the role of the central unit of the l-lactic acid oligomers and their molecular weight in the poly(ester amide)s properties. Polymer Bulletin, 2014, 71, 3085-3109.	3.3	8
83	Novel nanoaggregates with peripheric superparamagnetic iron oxide nanoparticles and organic cores through self-assembly of tailor-made block copolymers. RSC Advances, 2014, 4, 24428-24432.	3.6	8
84	Facile synthesis of well-controlled poly(glycidyl methacrylate) and its block copolymers via SARA ATRP at room temperature. Polymer Chemistry, 2015, 6, 1875-1882.	3.9	8
85	Selfâ€degassing SARA ATRP mediated by Na ₂ S ₂ O ₄ with no external additives. Journal of Polymer Science, 2020, 58, 145-153.	3.8	8
86	Development of red-light cleavable PEG-PLA nanoparticles as delivery systems for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111354.	5.0	8
87	Homogeneous polymerization of hydrophobic monomers in a bio-based dl-menthol/1-tetradecanol eutectic mixture by ATRP and RAFT polymerization. Green Chemistry, 2020, 22, 6827-6835.	9.0	8
88	Development of light-degradable poly(urethane-urea) hydrogel films. Materials Science and Engineering C, 2021, 131, 112520.	7.3	8
89	Addressing the role of triphenylphosphine in copper catalyzed ATRP. Polymer Chemistry, 2018, 9, 5348-5358.	3.9	7
90	Deviation from the theoretical predictions in the synthesis of amphiphilic block copolymers in a wide range of compositions based on poly(vinyl chloride) by single electron transfer: Degenerative chain living radical polymerization in suspension medium. Journal of Applied Polymer Science, 2013, 127, 3407-3417	2.6	6

JORGE F J COELHO

#	Article	IF	CITATIONS
91	Hydrophobic polymers for orodispersible films: a quality by design approach. Expert Opinion on Drug Delivery, 2016, 13, 1357-1374.	5.0	6
92	Increasing the Bile Acid Sequestration Performance of Cationic Hydrogels by Using an Advanced/Controlled Polymerization Technique. Pharmaceutical Research, 2017, 34, 1934-1943.	3.5	6
93	Dual electrochemical and chemical control in atom transfer radical polymerization with copper electrodes. Chemical Science, 2022, 13, 6008-6018.	7.4	6
94	Reversible Deactivation Radical Polymerization of Vinyl Chloride. ACS Symposium Series, 2018, , 227-261.	0.5	4
95	Catalytic Halogen Exchange in Supplementary Activator and Reducing Agent Atom Transfer Radical Polymerization for the Synthesis of Block Copolymers. Macromolecular Rapid Communications, 2021, 42, e2000532.	3.9	3
96	The influence of using sodium dithionite as SARA agent in miniemulsion ATRP. Journal of Polymer Science Part A, 2018, 56, 879-888.	2.3	2
97	Selfâ€degassing SARA ATRP mediated by Na 2 S 2 O 4 with no external additives. Journal of Polymer Science, 2020, 58, 145-153.	3.8	0
98	Application of vinyl polymerâ€based materials as nucleic acids carriers in cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 0, , .	6.1	0