
Jan Sap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11668512/publications.pdf Version: 2024-02-01

IAN SAD

#	Article	IF	CITATIONS
1	Protein tyrosine phosphatase-α amplifies transforming growth factor-β-dependent profibrotic signaling in lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L294-L311.	1.3	11
2	Loss-of-function of PTPR Î ³ and ζ, observed in sporadic schizophrenia, causes brain region-specific deregulation of monoamine levels and altered behavior in mice. Psychopharmacology, 2017, 234, 575-587.	1.5	18
3	Receptor Protein Tyrosine Phosphatase α–Mediated Enhancement of Rheumatoid Synovial Fibroblast Signaling and Promotion of Arthritis in Mice. Arthritis and Rheumatology, 2016, 68, 359-369.	2.9	24
4	An RPTPα/Src family kinase/Rap1 signaling module recruits myosin IIB to support contractile tension at apical E-cadherin junctions. Molecular Biology of the Cell, 2015, 26, 1249-1262.	0.9	39
5	Protein tyrosine phosphatase regulation of stem and progenitor cell biology. Seminars in Cell and Developmental Biology, 2015, 37, 82-89.	2.3	3
6	Receptor protein tyrosine phosphatase RPTPα controls epithelial adherens junctions, linking E-cadherin engagement to c-Src signaling to cortactin. Journal of Cell Science, 2014, 127, 2420-32.	1.2	27
7	Protein Tyrosine Phosphatase α Mediates Profibrotic Signaling in Lung Fibroblasts through TGF-β Responsiveness. American Journal of Pathology, 2014, 184, 1489-1502.	1.9	31
8	Low-density Lipoprotein Receptor-related Protein-1 (LRP1) Mediates Autophagy and Apoptosis Caused by Helicobacter pylori VacA. Journal of Biological Chemistry, 2012, 287, 31104-31115.	1.6	127
9	Loss of Function Studies in Mice and Genetic Association Link Receptor Protein Tyrosine Phosphatase α to Schizophrenia. Biological Psychiatry, 2011, 70, 626-635.	0.7	22
10	Regulatory Effects of Nitric Oxide on Src Kinase, FAK, p130Cas, and Receptor Protein Tyrosine Phosphatase Alpha (PTP-α): A Role for the Cellular Redox Environment. Antioxidants and Redox Signaling, 2010, 13, 109-125.	2.5	24
11	Molecular Characterization of <i>Helicobacter pylori</i> VacA Induction of IL-8 in U937 Cells Reveals a Prominent Role for p38MAPK in Activating Transcription Factor-2, cAMP Response Element Binding Protein, and NF-κB Activation. Journal of Immunology, 2008, 180, 5017-5027.	0.4	86
12	Genes contributing to prion pathogenesis. Journal of General Virology, 2008, 89, 1777-1788.	1.3	116
13	Activation of c-Src and Fyn Kinases by Protein-tyrosine Phosphatase RPTPα Is Substrate-specific and Compatible with Lipid Raft Localization. Journal of Biological Chemistry, 2008, 283, 35815-35824.	1.6	39
14	Helicobacter pylori VacA Enhances Prostaglandin E 2 Production through Induction of Cyclooxygenase 2 Expression via a p38 Mitogen-Activated Protein Kinase/Activating Transcription Factor 2 Cascade in AZ-521 Cells. Infection and Immunity, 2007, 75, 4472-4481.	1.0	42
15	RPTPα is required for rigidity-dependent inhibition of extension and differentiation of hippocampal neurons. Journal of Cell Science, 2007, 120, 3895-3904.	1.2	94
16	Tyrosine Phosphatases ε and α Perform Specific and Overlapping Functions in Regulation of Voltage-gated Potassium Channels in Schwann Cells. Molecular Biology of the Cell, 2006, 17, 4330-4342.	0.9	27
17	Clustering of Helicobacter pylori VacA in Lipid Rafts, Mediated by Its Receptor, Receptor-Like Protein Tyrosine Phosphatase β, Is Required for Intoxication in AZ-521 Cells. Infection and Immunity, 2006, 74, 6571-6580.	1.0	57
18	Essential Domain of Receptor Tyrosine Phosphatase β (RPTPβ) for Interaction with Helicobacter pylori Vacuolating Cytotoxin. Journal of Biological Chemistry, 2004, 279, 51013-51021.	1.6	38

Jan Sap

#	Article	IF	CITATIONS
19	Receptor protein tyrosine phosphatase is essential for hippocampal neuronal migration and long-term potentiation. EMBO Journal, 2003, 22, 4121-4131.	3.5	77
20	RPTP-α acts as a transducer of mechanical force on αv/β3-integrin–cytoskeleton linkages. Journal of Cell Biology, 2003, 161, 143-153.	2.3	194
21	The Differentiation of Skeletal Muscle Cells Involves a Protein-tyrosine Phosphatase-α-mediated C-Src Signaling Pathway. Journal of Biological Chemistry, 2002, 277, 46687-46695.	1.6	27
22	c-SRC Mediates Neurite Outgrowth through Recruitment of Crk to the Scaffolding Protein Sin/Efs without Altering the Kinetics of ERK Activation. Journal of Biological Chemistry, 2002, 277, 17406-17414.	1.6	47
23	Expression of protein tyrosine phosphatase alpha (RPTPα) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo. Oncogene, 2000, 19, 4979-4987.	2.6	77
24	Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-α. Nature, 1999, 401, 606-610.	13.7	177
25	Receptor protein tyrosine phosphatase α activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Current Biology, 1999, 9, 505-511.	1.8	268
26	Overexpression of Protein Tyrosine Phosphatase-α (PTP-α) but not PTP-κ Inhibits Translocation of GLUT4 in Rat Adipose Cells. Biochemical and Biophysical Research Communications, 1999, 255, 200-207.	1.0	31
27	Receptor-like Protein-tyrosine Phosphatase α Specifically Inhibits Insulin-increased Prolactin Gene Expression. Journal of Biological Chemistry, 1998, 273, 4800-4809.	1.6	36
28	Association between Receptor Protein-tyrosine Phosphatase RPTPα and the Grb2 Adaptor. Journal of Biological Chemistry, 1996, 271, 28086-28096.	1.6	56
29	Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell, 1993, 73, 541-554.	13.5	277
30	Biological Effects of the v-erbA Oncogene in Transformation of Avian Erythroid Cells. , 1991, , 137-147.		1
31	The Chicken c-erbA α-Product Induces Expression of Thyroid Hormone-Responsive Genes in 3,5,3′-Triiodothyronine Receptor- Deficient Rat Hepatoma Cells. Molecular Endocrinology, 1990, 4, 312-320.	3.7	20
32	v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA. Cell, 1990, 61, 1035-1049.	13.5	238
33	DNA Binding Properties of the Thyroid Hormone Receptor/c-erbA Protein and Its Viral Homologue P75gag-v-erbA. , 1990, , 69-75.		0
34	Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature, 1989, 340, 242-244.	13.7	402
35	The Thyroid Hormone Receptor/c-erbA Protein and its Viral Homologue P75gag-v-erbA. , 1989, , 161-168.		1

3

0

	JAN SAP		
#	Article	IF	CITATIONS
37	The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature, 1986, 324, 635-640.	13.7	1,388