Yuping Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1166629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Red-Emissive Organic Room-Temperature Phosphorescence Material for Time-Resolved Luminescence Bioimaging. CCS Chemistry, 2022, 4, 2550-2559.	4.6	39
2	Sensitive fluorescent sensor for the fuzzy exosomes in serum based on the exosome imprinted polymer sandwiched with aggregation induced emission. Sensors and Actuators B: Chemical, 2022, 358, 131182.	4.0	11
3	Protic acids as third components improve the phosphorescence properties of the guest-host system through hydrogen bonds. Chemical Engineering Journal, 2022, 433, 133530.	6.6	25
4	Selenium atoms induce organic doped systems to produce pure phosphorescence emission. Chemical Communications, 2022, 58, 1179-1182.	2.2	17
5	Halogen Bonding: A New Platform for Achieving Multiâ€Stimuliâ€Responsive Persistent Phosphorescence. Angewandte Chemie, 2022, 134, .	1.6	20
6	Halogen Bonding: A New Platform for Achieving Multiâ€&timuliâ€Responsive Persistent Phosphorescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	111
7	The fluorescence properties of 4′-Methoxychalcone derivates modified by substituents and investigation of lysosomal imaging. Dyes and Pigments, 2022, 199, 110091.	2.0	6
8	Rücktitelbild: Halogen Bonding: A New Platform for Achieving Multi‣timuliâ€Responsive Persistent Phosphorescence (Angew. Chem. 13/2022). Angewandte Chemie, 2022, 134, .	1.6	1
9	Mitochondrial targeted AlEgen phototheranostics for bypassing immune barrier via encumbering mitochondria functions. Biomaterials, 2022, 283, 121409.	5.7	18
10	Clusterization-Triggered Color-Tunable Room-Temperature Phosphorescence from 1,4-Dihydropyridine-Based Polymers. Journal of the American Chemical Society, 2022, 144, 1361-1369.	6.6	70
11	Amphiphilic and Zwitterionic Multi Arylpyrroles with Nearâ€Infrared Aggregationâ€Induced Emission for Cell Membrane Imaging. ChemNanoMat, 2022, 8, .	1.5	1
12	Multicomponent Spiropolymerization of Diisocyanides, Activated Alkynes, and Bis-Anhydrides. Macromolecules, 2022, 55, 6150-6159.	2.2	6
13	Catalystâ€Free Multicomponent Cyclopolymerizations of Diisocyanides, Activated Alkynes, and 1,4â€Dibromoâ€2,3â€Butanedione: a Facile Strategy toward Functional Polyiminofurans Containing Bromomethyl Groups. Macromolecular Rapid Communications, 2021, 42, e2000463.	2.0	13
14	Recent progress of aggregation-induced emission luminogens (AlEgens) for bacterial detection and theranostics. Materials Chemistry Frontiers, 2021, 5, 1164-1184.	3.2	29
15	Excitation-Dependent Triplet–Singlet Intensity from Organic Host–Guest Materials: Tunable Color, White-Light Emission, and Room-Temperature Phosphorescence. Journal of Physical Chemistry Letters, 2021, 12, 1814-1821.	2.1	81
16	Unprecedented Application of Covalent Organic Frameworks for Polymerization Catalysis: Rh/TPB-DMTP-COF in Polymerization of Phenylacetylene and Its Functional Derivatives. ACS Applied Materials & Interfaces, 2021, 13, 13693-13704.	4.0	9
17	Recent Progress in Pure Organic Room Temperature Phosphorescence of Small Molecular Host–Guest Systems. , 2021, 3, 379-397.		155
18	Coumarin-substituted pyrrole derivatives with aggregation-enhanced emission characteristics for detecting the glass transition temperature of polymers. Dyes and Pigments, 2021, 188, 109222.	2.0	8

#	Article	IF	CITATIONS
19	Multicomponent Spiropolymerization of Diisocyanides, Diethyl Acetylenedicarboxylate, and Halogenated Quinones. Macromolecular Rapid Communications, 2021, 42, e2100029.	2.0	9
20	Influence of Guest/Host Morphology on Room Temperature Phosphorescence Properties of Pure Organic Doped Systems. Journal of Physical Chemistry Letters, 2021, 12, 7357-7364.	2.1	26
21	Donor strategy for promoting nonradiative decay to achieve an efficient photothermal therapy for treating cancer. Science China Chemistry, 2021, 64, 1530-1539.	4.2	12
22	Rational design of pyrrole derivatives with aggregation-induced phosphorescence characteristics for time-resolved and two-photon luminescence imaging. Nature Communications, 2021, 12, 4883.	5.8	90
23	Achieving Efficient Phosphorescence and Mechanoluminescence in Organic Host–Guest System by Energy Transfer. Advanced Functional Materials, 2021, 31, 2108072.	7.8	74
24	A "Turn-on―fluorescent bioprobe with aggregation-induced emission characteristics for detection of influenza virus-specific hemagglutinin protein. Sensors and Actuators B: Chemical, 2021, 345, 130392.	4.0	4
25	Fluorene-based host-guest phosphorescence materials for information encryption. Chemical Engineering Journal, 2021, 426, 131607.	6.6	54
26	Efficient and organic host–guest room-temperature phosphorescence: tunable triplet–singlet crossing and theoretical calculations for molecular packing. Chemical Science, 2021, 12, 6518-6525.	3.7	83
27	Pure room temperature phosphorescence emission of an organic host–guest doped system with a quantum efficiency of 64%. Journal of Materials Chemistry C, 2021, 9, 3391-3395.	2.7	52
28	Excited-State Modulation of Aggregation-Induced Emission Molecules for High-Efficiency Triplet Exciton Generation. , 2021, 3, 1767-1777.		26
29	UV-detecting dual-responsive strips based on dicyanoacetate-containing hexaphenylbutadiene with aggregation-induced emission characteristic. Dyes and Pigments, 2020, 175, 108169.	2.0	8
30	A supramolecular approach for the synthesis of cross-linked ionic polyacetylene network gels. Materials Chemistry Frontiers, 2020, 4, 645-650.	3.2	2
31	Functional Isocyanide-Based Polymers. Accounts of Chemical Research, 2020, 53, 2879-2891.	7.6	37
32	Silylium cation initiated sergeants-and-soldiers type chiral amplification of helical aryl isocyanide copolymers. Polymer Chemistry, 2020, 11, 6017-6028.	1.9	8
33	Wideâ€Range Colorâ€Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angewandte Chemie - International Edition, 2020, 59, 16054-16060.	7.2	340
34	Wideâ€Range Colorâ€Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angewandte Chemie, 2020, 132, 16188-16194.	1.6	40
35	Self-supported rhodium catalysts based on a microporous metal–organic framework for polymerization of phenylacetylene and its derivatives. Polymer Chemistry, 2020, 11, 2904-2913.	1.9	8
36	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117

#	Article	IF	CITATIONS
37	The Aggregation Regularity Effect of Multiarylpyrroles on Their Nearâ€Infrared Aggregationâ€Enhanced Emission Property. Chemistry - A European Journal, 2020, 26, 14947-14953.	1.7	10
38	Hexaphenyl-1,3-butadiene derivative: a novel "turn-on―rapid fluorescent probe for intraoperative pathological diagnosis of hepatocellular carcinoma. Materials Chemistry Frontiers, 2020, 4, 2716-2722.	3.2	7
39	Turn-on and color-switchable red luminescent liquid crystals based on pyrrolopyrrole derivatives. Journal of Materials Chemistry C, 2020, 8, 11177-11184.	2.7	15
40	MDM2â€Associated Clusterizationâ€Triggered Emission and Apoptosis Induction Effectuated by a Theranostic Spiropolymer. Angewandte Chemie, 2020, 132, 8513-8517.	1.6	6
41	MDM2â€Associated Clusterizationâ€Triggered Emission and Apoptosis Induction Effectuated by a Theranostic Spiropolymer. Angewandte Chemie - International Edition, 2020, 59, 8435-8439.	7.2	42
42	Spontaneous Multicomponent Polymerization of Imidazole, Diacetylenic Esters, and Diisocyanates for the Preparation of Poly(l²-aminoacrylate)s with Cluster-Induced Emission Characteristics. Macromolecules, 2020, 53, 1054-1062.	2.2	27
43	1,2,5â€Triphenylpyrrole Derivatives with Dual Intense Photoluminescence in Both Solution and the Solid State: Solvatochromism and Polymorphic Luminescence Properties. Chemistry - A European Journal, 2019, 25, 573-581.	1.7	39
44	Effects of fused rings linked to the 2,5-position of pyrrole derivatives with near-infrared emission on their aggregation-enhanced emission properties. Materials Chemistry Frontiers, 2019, 3, 2072-2076.	3.2	21
45	Triphenylquinoline (TPQ)-Based Dual-State Emissive Probe for Cell Imaging in Multicellular Tumor Spheroids. ACS Applied Bio Materials, 2019, 2, 3686-3692.	2.3	30
46	Polymerization of phenylacetylenes by binuclear rhodium catalysts with different para-binucleating phenoxyiminato linkages. Polymer Chemistry, 2019, 10, 4163-4172.	1.9	4
47	Conformational sensitivity of tetraphenyl-1,3-butadiene derivatives with aggregation-induced emission characteristics. Science China Chemistry, 2019, 62, 1393-1397.	4.2	16
48	Revealing Insight into Long-Lived Room-Temperature Phosphorescence of Host–Guest Systems. Journal of Physical Chemistry Letters, 2019, 10, 6019-6025.	2.1	90
49	Real time bioimaging for mitochondria by taking the aggregation process of aggregation-induced emission near-infrared dyes with wash-free staining. Materials Chemistry Frontiers, 2019, 3, 57-63.	3.2	33
50	A Freezingâ€Induced Turnâ€On Imaging Modality for Realâ€Time Monitoring of Cancer Cells in Cryosurgery. Angewandte Chemie, 2019, 131, 3874-3877.	1.6	7
51	A novel strategy for realizing dual state fluorescence and low-temperature phosphorescence. Materials Chemistry Frontiers, 2019, 3, 284-291.	3.2	39
52	Synthesis and Characterization of Poly(iminofuran-arylene) Containing Bromomethyl Groups Linked at the 5-Position of a Furan Ring via the Multicomponent Polymerizations of Diisocyanides, Dialkylacetylene Dicarboxylates, and Bis(2-bromoacetyl)biphenyl. Macromolecules, 2019, 52, 3319-3326.	2.2	23
53	AliBu3: unprecedented main-group metal catalyst for helical sense-selective polymerization of chiral aryl isocyanides and copolymerization with achiral aryl isocyanides. Materials Chemistry Frontiers, 2019, 3, 1192-1198.	3.2	4
54	lonic liquid crystals with aggregation-induced emission properties based on pyrrolo[3,2- <i>b</i>]pyrrole salt compounds. Materials Chemistry Frontiers, 2019, 3, 1385-1390.	3.2	9

#	Article	IF	CITATIONS
55	A stabilized lamellar liquid crystalline phase with aggregation-induced emission features based on pyrrolopyrrole derivatives. Materials Chemistry Frontiers, 2019, 3, 1105-1112.	3.2	17
56	A Freezingâ€Induced Turnâ€On Imaging Modality for Realâ€Time Monitoring of Cancer Cells in Cryosurgery. Angewandte Chemie - International Edition, 2019, 58, 3834-3837.	7.2	44
57	Synthesis of Poly(amine–furan–arylene)s through a One-Pot Catalyst-Free in Situ Cyclopolymerization of Diisocyanide, Dialkylacetylene Dicarboxylates, and Dialdehyde. Macromolecules, 2019, 52, 729-737.	2.2	23
58	Synthesis of Polyquinolines via One-Pot Polymerization of Alkyne, Aldehyde, and Aniline under Metal-Free Catalysis and Their Properties. Macromolecules, 2018, 51, 3254-3263.	2.2	27
59	A strategy for the molecular design of aggregation-induced emission units further modified by substituents. Materials Chemistry Frontiers, 2018, 2, 1175-1183.	3.2	50
60	A "Turn-On―fluorescent chemosensor with the aggregation-induced emission characteristic for high-sensitive detection of Ce ion. Sensors and Actuators B: Chemical, 2018, 267, 351-356.	4.0	37
61	Cationic half-sandwich rare-earth metal alkyl species catalyzed polymerization and copolymerization of aryl isocyanides possessing polar, bulky, or chiral substituents. Polymer Chemistry, 2018, 9, 984-993.	1.9	11
62	The Synergistic Effect between Triphenylpyrrole Isomers as Donors, Linking Groups, and Acceptors on the Fluorescence Properties of D–π–A Compounds in the Solid State. Chemistry - A European Journal, 2018, 24, 434-442.	1.7	23
63	Synergistic flameâ€retardant effect and mechanisms of boron/phosphorus compounds on epoxy resins. Polymers for Advanced Technologies, 2018, 29, 641-648.	1.6	56
64	Two-step separation-free quantitative detection of HSA and FIB in human blood plasma by a pentaphenylpyyrrole derivative with aggregation-enhanced emission properties. Sensors and Actuators B: Chemical, 2018, 255, 854-861.	4.0	6
65	The application of CO 2 -sensitive AlEgen in studying the synergistic effect of stromal cells and tumor cells in a heterocellular system. Analytica Chimica Acta, 2018, 1001, 151-157.	2.6	8
66	Multicomponent spiropolymerization of diisocyanides, alkynes and carbon dioxide for constructing 1,6-dioxospiro[4,4]nonane-3,8-diene as structural units under one-pot catalyst-free conditions. Polymer Chemistry, 2018, 9, 5543-5550.	1.9	26
67	Frontispiece: Aggregationâ€Induced Emission of Multiphenylâ€Substituted 1,3â€Butadiene Derivatives: Synthesis, Properties and Application. Chemistry - A European Journal, 2018, 24, .	1.7	2
68	Polymerization of 1-chloro-2-phenylacetylene by cationic monoanionic tridentate (<i>S</i> , <i>S</i>)-bis(oxazolinylphenyl)amido-ligated palladium catalysts: is it a coordination–insertion mechanism?. Polymer Chemistry, 2018, 9, 4856-4865.	1.9	8
69	Aggregationâ€Induced Emission of Multiphenylâ€Substituted 1,3â€Butadiene Derivatives: Synthesis, Properties and Application. Chemistry - A European Journal, 2018, 24, 15965-15977.	1.7	30
70	[Ph ₃ C][B(C ₆ F ₅) ₄]: A Highly Efficient Metalâ€Free Singleâ€Component Initiator for the Helicalâ€6enseâ€6elective Cationic Copolymerization of Chiral Aryl Isocyanides and Achiral Aryl Isocyanides. Angewandte Chemie, 2018, 130, 9085-9090.	1.6	6
71	Application of a Novel "Turn-on―Fluorescent Material to the Detection of Aluminum Ion in Blood Serum. ACS Applied Materials & Interfaces, 2018, 10, 23667-23673.	4.0	38
72	Synthesis and characterization of poly(ethene–ketone–arylene–ketone)s containing pendant methylthio groups <i>via</i> metal-free catalyzed copolymerization of aryldiynes with DMSO. Polymer Chemistry, 2018, 9, 4404-4412.	1.9	9

#	Article	IF	CITATIONS
73	The Dualâ€State Luminescent Mechanism of 2,3,4,5â€Tetraphenylâ€1 <i>H</i> â€pyrrole. Chemistry - A European Journal, 2018, 24, 14269-14274.	1.7	51
74	[Ph ₃ C][B(C ₆ F ₅) ₄]: A Highly Efficient Metalâ€Free Singleâ€Component Initiator for the Helicalâ€Senseâ€Selective Cationic Copolymerization of Chiral Aryl Isocyanides and Achiral Aryl Isocyanides. Angewandte Chemie - International Edition, 2018, 57, 8947-8952.	7.2	27
75	The Investigation of the Toughening Mechanism of PHBV/PBAT with a Novel Hyperbranched Ethylenediamine Triazine Polymer Based Modifier: The Formation of the Transition Layer and the Microcrosslinking Structure. Journal of Polymers and the Environment, 2018, 26, 4158-4167.	2.4	12
76	Turn-on fluorescent probe with aggregation-induced emission characteristics for polyazoles. Materials Chemistry Frontiers, 2018, 2, 1779-1783.	3.2	26
77	Onâ€Water Polymerization of Phenylacetylene Catalyzed by Rh Complexes Bearing Strong Ï€â€Acidic Dibenzo[a,e]cyclooctatetraene Ligand. Journal of Polymer Science Part A, 2017, 55, 716-725.	2.5	8
78	Effect of Substituent Position on the Photophysical Properties of Triphenylpyrrole Isomers. Journal of Physical Chemistry C, 2017, 121, 11658-11664.	1.5	32
79	Aggregation-induced emission enhancement and aggregation-induced circular dichroism of chiral pentaphenylpyrrole derivatives and their helical self-assembly. New Journal of Chemistry, 2017, 41, 8877-8884.	1.4	27
80	Ligandâ€Controlled Formation and Photoluminescence Properties of CH ₃ NH ₃ PbBr ₃ Nanocubes and Nanowires. ChemNanoMat, 2017, 3, 303-310.	1.5	57
81	Reversible multicolor switching via simple reactions of the AIE-characteristic molecules. Dyes and Pigments, 2017, 139, 714-719.	2.0	11
82	1,4-Specific copolymerization of 1,3-cyclohexadiene with isoprene and their terpolymerization with styrene by cationic half-sandwich fluorenyl rare-earth metal alkyl catalysts. Polymer Chemistry, 2017, 8, 698-707.	1.9	10
83	Polymorphism-dependent aggregation-induced emission of pyrrolopyrrole-based derivative and its multi-stimuli response behaviors. Dyes and Pigments, 2017, 139, 664-671.	2.0	48
84	Light/temperature-enhanced emission characteristics of malononitrile-containing hexaphenyl-1,3-butadiene derivatives: the hotter, the brighter. Materials Chemistry Frontiers, 2017, 1, 2569-2573.	3.2	11
85	Monomer-induced switching of stereoselectivity and limitation of chain growth in the polymerization of amine-containing para-substituted phenylacetylenes by [Rh(norbornadiene)Cl]2. Polymer Chemistry, 2017, 8, 5761-5768.	1.9	7
86	A highly sensitive "turn-on―fluorescent probe with an aggregation-induced emission characteristic for quantitative detection of γ-globulin. Biosensors and Bioelectronics, 2017, 92, 536-541.	5.3	31
87	Dimalononitrile-containing probe based on aggregation-enhanced emission features for the multi-mode fluorescence detection of volatile amines. Faraday Discussions, 2017, 196, 101-111.	1.6	18
88	Tetraphenylethylene derivative capped CH3NH3PbBr3 nanocrystals: AIE-activated assembly into superstructures. Faraday Discussions, 2017, 196, 91-99.	1.6	8
89	The selective detection of chloroform using an organic molecule with aggregation-induced emission properties in the solid state as a fluorescent sensor. Sensors and Actuators B: Chemical, 2016, 232, 264-268.	4.0	24
90	Stimuli-responsive fluorophores with aggregation-induced emission: implication for dual-channel optical data storage. Journal of Materials Chemistry C, 2016, 4, 5334-5341.	2.7	60

#	Article	IF	CITATIONS
91	The fluorescent bioprobe with aggregation-induced emission features for monitoring to carbon dioxide generation rate in single living cell and early identification of cancer cells. Biomaterials, 2016, 103, 67-74.	5.7	34
92	Diaminomaleonitrile-based Schiff bases: aggregation-enhanced emission, red fluorescence, mechanochromism and bioimaging applications. Journal of Materials Chemistry C, 2016, 4, 10430-10434.	2.7	65
93	Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity. Scientific Reports, 2016, 6, 32944.	1.6	39
94	Anthracene Modified by Aldehyde Groups Exhibiting Aggregationâ€Induced Emission Properties. Chinese Journal of Chemistry, 2016, 34, 1071-1075.	2.6	18
95	Effect of E/Z isomerization on the aggregation-induced emission features and mechanochromic performance of dialdehyde-substituted hexaphenyl-1,3-butadiene. Dyes and Pigments, 2016, 133, 354-362.	2.0	38
96	The synthesis of chiral triphenylpyrrole derivatives and their aggregation-induced emission enhancement, aggregation-induced circular dichroism and helical self-assembly. RSC Advances, 2016, 6, 23420-23427.	1.7	20
97	Solvent-assistant self-assembly of an AIE+TICT fluorescent Schiff base for the improved ammonia detection. Talanta, 2016, 150, 104-112.	2.9	46
98	Properties of Polymorphism and Acid Response of Pyrrolopyrrole-based Derivative with Aggregation-induced Emission Behavior. Acta Chimica Sinica, 2016, 74, 942.	0.5	8
99	Copolymerization of isoprene with ethylene catalyzed by cationic halfâ€sandwich fluorenyl scandium catalysts. Journal of Polymer Science Part A, 2015, 53, 2898-2907.	2.5	15
100	Aggregationâ€Induced Emission of Hexaphenylâ€1,3â€butadiene. Chinese Journal of Chemistry, 2015, 33, 701-704.	2.6	13
101	A fluorescent probe with an aggregation-enhanced emission feature for real-time monitoring of low carbon dioxide levels. Journal of Materials Chemistry C, 2015, 3, 7621-7626.	2.7	37
102	A diethylaminophenol functionalized Schiff base: crystallization-induced emission-enhancement, switchable fluorescence and application for security printing and data storage. Journal of Materials Chemistry C, 2015, 3, 7446-7454.	2.7	69
103	Red fluorescent luminogen from pyrrole derivatives with aggregation-enhanced emission for cell membrane imaging. Chemical Communications, 2015, 51, 8555-8558.	2.2	54
104	Reversible Luminescence Switching of an Organic Solid: Controllable On–Off Persistent Room Temperature Phosphorescence and Stimulated Multiple Fluorescence Conversion. Advanced Optical Materials, 2015, 3, 1184-1190.	3.6	173
105	Quantitation of Albumin in Serum Using "Turn-on―Fluorescent Probe with Aggregation-Enhanced Emission Characteristics. ACS Applied Materials & Interfaces, 2015, 7, 26094-26100.	4.0	93
106	Aggregationâ€Induced Emission Features of Organometal Halide Perovskites and Their Fluorescence Probe Applications. Advanced Optical Materials, 2015, 3, 112-119.	3.6	87
107	Tuning the Luminescence of Metal–Organic Frameworks for Detection of Energetic Heterocyclic Compounds. Journal of the American Chemical Society, 2014, 136, 15485-15488.	6.6	390
108	3D cross-correlative matrix temperature detection and non-invasive thermal mapping based on a molecular probe. Chemical Science, 2014, 5, 4388-4393.	3.7	25

#	Article	IF	CITATIONS
109	Tunable fluorescence upon aggregation: Photophysical properties of cationic conjugated polyelectrolytes containing AIE and ACQ units and their use in the dual-channel quantification of heparin. Sensors and Actuators B: Chemical, 2014, 197, 334-341.	4.0	27
110	Mechanochromic Behavior of Arylâ€Substituted Butaâ€1,3â€Diene Derivatives with Aggregation Enhanced Emission. Chemistry - A European Journal, 2014, 20, 8856-8861.	1.7	37
111	A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition. Scientific Reports, 2014, 4, 4366.	1.6	100
112	An AIEE polyelectrolyte as a light-up fluorescent probe for heparin sensing in full detection range. Science China Chemistry, 2013, 56, 1239-1246.	4.2	13
113	Effect of bilayer number on the photoluminescent property of TPE-based self-assembled film. Science Bulletin, 2013, 58, 2728-2732.	1.7	6
114	Switching emissions of two tetraphenylethene derivatives with solvent vapor, mechanical, and thermal stimuli. Science Bulletin, 2013, 58, 2723-2727.	1.7	34
115	Defect-sensitive crystals based on diaminomaleonitrile-functionalized Schiff base with aggregation-enhanced emission. Journal of Materials Chemistry C, 2013, 1, 7314.	2.7	124
116	DMF-induced emission of an aryl-substituted pyrrole derivative: a solid thermo-responsive material to detect temperature in a specific range. Journal of Materials Chemistry C, 2013, 1, 7534.	2.7	42
117	Pillar[5]arene-based side-chain polypseudorotaxanes as an anion-responsive fluorescent sensor. Polymer Chemistry, 2013, 4, 2224.	1.9	101
118	Reversible and hydrogen bonding-assisted piezochromic luminescence for solid-state tetraaryl-buta-1,3-diene. Chemical Communications, 2013, 49, 7049.	2.2	115
119	Tunable fluorescence conjugated copolymers consisting of tetraphenylethylene and fluorene units: From aggregationâ€induced emission enhancement to dualâ€channel fluorescence response. Journal of Polymer Science Part A, 2013, 51, 229-240.	2.5	50
120	Star-shaped two-dimensional covalent organic frameworks. CrystEngComm, 2013, 15, 1508-1511.	1.3	74
121	A fluorescence-switchable luminogen in the solid state: a sensitive and selective sensor for the fast "turn-on―detection of primary amine gas. Chemical Communications, 2013, 49, 4848.	2.2	85
122	Switching the emission of tetrakis(4-methoxyphenyl)ethylene among three colors in the solid state. New Journal of Chemistry, 2013, 37, 1696.	1.4	59
123	STIMULUS RESPONSIVE LUMINESCENT MATERIALS: CRYSTALLIZATION-INDUCED EMISSION ENHANCEMENT. Journal of Molecular and Engineering Materials, 2013, 01, 1340010.	0.9	8
124	A highly sensitive, single selective, real-time and "turn-on―fluorescent sensor for Al3+ detection in aqueous media. Journal of Materials Chemistry, 2012, 22, 19296.	6.7	110
125	A novel "turn-on―fluorescent chemosensor for the selective detection ofAl3+ based on aggregation-induced emission. Chemical Communications, 2012, 48, 416-418.	2.2	346
126	SYNTHESIS AND PROPERTY OF A WATER-SOLUBLE AGGREGATION-INDUCED EMISSION ENHANCEMENT CONJUGATED POLYMER. Acta Polymerica Sinica, 2012, 012, 453-461.	0.0	8

#	Article	IF	CITATIONS
127	Selective detection of phosphaphenanthrenecontaining luminophors with aggregation-induced emission enhancement to transition metal ions. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2011, 6, 15-20.	0.4	1
128	Aggregation-Induced Emission Enhancement of Aryl-Substituted Pyrrole Derivatives. Journal of Physical Chemistry B, 2010, 114, 16731-16736.	1.2	139
129	Ferrocene-Functionalized Hyperbranched Polyphenylenes: Synthesis, Redox Activity, Light Refraction, Transition-Metal Complexation, and Precursors to Magnetic Ceramics. Macromolecules, 2010, 43, 680-690.	2.2	58
130	Synthesis and properties of poly(1-phenyl-1-octyne)s containing stereogenic and chromophoric pendant groups. Science in China Series B: Chemistry, 2009, 52, 1691-1702.	0.8	4
131	Preparation of highly crosslinked monodisperse poly(styrene <i> oâ€</i> divinylbenzene) microspheres by twoâ€stage dispersion polymerization. Journal of Applied Polymer Science, 2008, 109, 1189-1196.	1.3	10
132	Acetylene Polycyclotrimerization:  Synthesis and Characterization of Ferrocene-Containing Hyperbranched Polyarylenes. Macromolecules, 2007, 40, 5612-5617.	2.2	19
133	Hyperbranched Poly(ferrocenylphenylenes):Â Synthesis, Characterization, Redox Activity, Metal Complexation, Pyrolytic Ceramization, and Soft Ferromagnetism. Macromolecules, 2007, 40, 8195-8204.	2.2	45
134	Protein Detection and Quantitation by Tetraphenylethene-Based Fluorescent Probes with Aggregation-Induced Emission Characteristics. Journal of Physical Chemistry B, 2007, 111, 11817-11823.	1.2	309
135	Vapochromism and Crystallization-Enhanced Emission of 1,1-Disubstituted 2,3,4,5-Tetraphenylsiloles. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 673-678.	1.9	41
136	Synthesis of liquid crystalline poly(1-pentyne)s and fabrication of polyacetylene–perovskite hybrids. Journal of Polymer Science Part A, 2006, 44, 3538-3550.	2.5	12
137	Synthesis and characterization of a new disubstituted polyacetylene containing indolylazo moieties in side chains. Journal of Polymer Science Part A, 2006, 44, 5672-5681.	2.5	34
138	Vapochromism of Hexaphenylsilole. Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15, 287-291.	1.9	107
139	Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chemistry of Materials, 2003, 15, 1535-1546.	3.2	1,082
140	Hyperbranched Poly(phenylenesilolene)s:Â Synthesis, Thermal Stability, Electronic Conjugation, Optical Power Limiting, and Cooling-Enhanced Light Emission. Macromolecules, 2003, 36, 4319-4327.	2.2	186
141	Functional Polyacetylenes:Â Synthesis, Thermal Stability, Liquid Crystallinity, and Light Emission of Polypropiolates. Macromolecules, 2002, 35, 8288-8299.	2.2	77
142	New Catalysts for Polymerizations of Substituted Acetylenes. ACS Symposium Series, 2000, , 146-164.	0.5	16
143	Aggregation-Induced Emission and Applications of Aryl-Substituted Pyrrole Derivatives. , 0, , 131-155.		3