Liang Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1166601/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Assemblies and composites of gold nanostructures for functional devices. Aggregate, 2022, 3, e57.	5.2	10
2	Mechanically Durable Memristor Arrays Based on a Discrete Structure Design. Advanced Materials, 2022, 34, e2106212.	11.1	19
3	Artificial Skin Perception. Advanced Materials, 2021, 33, e2003014.	11.1	203
4	Fusing Stretchable Sensing Technology with Machine Learning for Human–Machine Interfaces. Advanced Functional Materials, 2021, 31, 2008807.	7.8	84
5	A Compliant Ionic Adhesive Electrode with Ultralow Bioelectronic Impedance. Advanced Materials, 2020, 32, e2003723.	11.1	86
6	Lab-on-Mask for Remote Respiratory Monitoring. , 2020, 2, 1178-1181.		58
7	An Onâ€Skin Electrode with Antiâ€Epidermalâ€Surfaceâ€Lipid Function Based on a Zwitterionic Polymer Brush. Advanced Materials, 2020, 32, e2001130.	11.1	74
8	Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures. Nature Communications, 2020, 11, 2183.	5.8	47
9	Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nature Electronics, 2020, 3, 563-570.	13.1	298
10	A supertough electro-tendon based on spider silk composites. Nature Communications, 2020, 11, 1332.	5.8	73
11	Adhesive Biocomposite Electrodes on Sweaty Skin for Long-Term Continuous Electrophysiological Monitoring. , 2020, 2, 478-484.		107
12	Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Science Advances, 2019, 5, eaaw4515.	4.7	90
13	Mechano-regulated metal–organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nature Communications, 2018, 9, 3813.	5.8	57
14	Nanochannels: A 1D Vanadium Dioxide Nanochannel Constructed via Electricâ€Fieldâ€Induced Ion Transport and its Superior Metal–Insulator Transition (Adv. Mater. 39/2017). Advanced Materials, 2017, 29, .	11.1	1
15	A 1D Vanadium Dioxide Nanochannel Constructed via Electricâ€Fieldâ€Induced Ion Transport and its Superior Metal–Insulator Transition. Advanced Materials, 2017, 29, 1702162.	11.1	79
16	Organic Biomimicking Memristor for Information Storage and Processing Applications. Advanced Electronic Materials, 2016, 2, 1500298.	2.6	181
17	Synaptic plasticity and learning behaviours in flexible artificial synapse based on polymer/viologen system. Journal of Materials Chemistry C, 2016, 4, 3217-3223.	2.7	61
18	Reversible Luminescence Modulation upon an Electric Field on a Full Solid-State Device Based on Lanthanide Dimers. ACS Applied Materials & Interfaces, 2016, 8, 15551-15556.	4.0	8

Liang Pan

#	Article	IF	CITATIONS
19	An organic terpyridyl-iron polymer based memristor for synaptic plasticity and learning behavior simulation. RSC Advances, 2016, 6, 25179-25184.	1.7	48
20	Nonvolatile Memory: Metalâ€Organic Framework Nanofilm for Mechanically Flexible Information Storage Applications (Adv. Funct. Mater. 18/2015). Advanced Functional Materials, 2015, 25, 2630-2630.	7.8	1
21	Metalâ€Organic Framework Nanofilm for Mechanically Flexible Information Storage Applications. Advanced Functional Materials, 2015, 25, 2677-2685.	7.8	133
22	Transparent Electronics: Thermally Stable Transparent Resistive Random Access Memory based on Allâ€Oxide Heterostructures (Adv. Funct. Mater. 15/2014). Advanced Functional Materials, 2014, 24, 2110-2110.	7.8	2
23	A Resistance-Switchable and Ferroelectric Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 17477-17483.	6.6	103
24	Thermally Stable Transparent Resistive Random Access Memory based on Allâ€Oxide Heterostructures. Advanced Functional Materials, 2014, 24, 2171-2179.	7.8	150
25	Role of oxadiazole moiety in different D–A polyazothines and related resistive switching properties. Journal of Materials Chemistry C, 2013, 1, 4556.	2.7	56
26	Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant. Journal of Materials Chemistry, 2012, 22, 520-526.	6.7	70
27	Electrically controlled electron transfer and resistance switching in reduced graphene oxide noncovalently functionalized with thionine. Journal of Materials Chemistry, 2012, 22, 16422.	6.7	42
28	Resistive Switching Memories: Observation of Conductance Quantization in Oxideâ€Based Resistive Switching Memory (Adv. Mater. 29/2012). Advanced Materials, 2012, 24, 3898-3898.	11.1	2