
Andrew C Hogg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11665093/publications.pdf Version: 2024-02-01

ANDREW C HOCC

#	Article	IF	CITATIONS
1	Distribution and Prevalence of Fusarium Crown Rot and Common Root Rot Pathogens of Wheat in Montana. Plant Disease, 2011, 95, 1099-1108.	1.4	80
2	Comparison of pathogenicity of the Fusarium crown rot (FCR) complex (F. culmorum, F.) Tj ETQq0 0 0 rgBT /Ove Plant Pathology, 2009, 125, 387-395.	rlock 10 Tf 1.7	50 707 Td () 33
3	Nutritional and Quality Traits of Pasta Made from SSIIa Null Highâ€Amylose Durum Wheat. Cereal Chemistry, 2015, 92, 395-400.	2.2	17
4	Increased Resistance to <i>Penicillium</i> Seed Rot in Transgenic Wheat Overâ€expressing Puroindolines. Journal of Phytopathology, 2012, 160, 243-247.	1.0	14
5	Population Dynamics Between <i>Fusarium pseudograminearum</i> and <i>Bipolaris sorokiniana</i> in Wheat Stems Using Real-Time qPCR. Plant Disease, 2011, 95, 1089-1098.	1.4	12
6	Novel <i>ssIla</i> Alleles Produce Specific Seed Amylose Levels in Hexaploid Wheat. Cereal Chemistry, 2017, 94, 1008-1015.	2.2	10
7	Impacts of <i>SSIIaâ€A</i> Null Allele on Durum Wheat Noodle Quality. Cereal Chemistry, 2014, 91, 176-182.	2.2	7
8	Mutagenesis-Derived Puroindoline Alleles in Triticum aestivum and Their Impacts on Milling and Bread Quality. Cereal Chemistry, 2016, 93, 201-208.	2.2	5
9	Creation and Characterization of a Double Null <i>Puroindoline</i> Genotype in Spring Wheat. Cereal Chemistry, 2017, 94, 805-810.	2.2	4
10	Evaluating the impact of <i>Rht</i> hypomorphic mutations in durum wheat. Crop Science, 2022, 62, 247-258.	1.8	4
11	Milling and baking quality of hexaploid spring wheat starch synthase IIa (<i>ssIIa</i>) mutants with elevated amylose content. Cereal Chemistry, 2019, 96, 532-544.	2.2	3
12	Identification and molecular characterization of novel Rhtâ€1 alleles in hard red spring wheat. Crop Science, 2021, 61, 1030-1037.	1.8	2
13	Registration of Wheat Lines Carrying Novel Mutagenesisâ€Đerived Puroindoline Alleles. Journal of Plant Registrations, 2019, 13, 455-460.	0.5	1