
Pierre Colas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1166310/publications.pdf Version: 2024-02-01

DIEDDE COLAS

#	Article	IF	CITATIONS
1	Functional characterization of CDK10 and cyclin M truncated variants causing severe developmental disorders. Molecular Genetics & Genomic Medicine, 2021, 9, e1782.	0.6	2
2	Cyclin-dependent kinases and rare developmental disorders. Orphanet Journal of Rare Diseases, 2020, 15, 203.	1.2	21
3	Development of a CDK10/CycM in vitro Kinase Screening Assay and Identification of First Small-Molecule Inhibitors. Frontiers in Chemistry, 2020, 8, 147.	1.8	12
4	Identification of a new series of flavopiridol-like structures as kinase inhibitors with high cytotoxic potency. European Journal of Medicinal Chemistry, 2020, 199, 112355.	2.6	17
5	Kinase-Based Screening of Marine Natural Extracts Leads to the Identification of a Cytotoxic High Molecular Weight Metabolite from the Mediterranean Sponge Crambe tailliezi. Marine Drugs, 2019, 17, 569.	2.2	7
6	A homozygous deleterious <i>CDK10</i> mutation in a patient with agenesis of corpus callosum, retinopathy, and deafness. American Journal of Medical Genetics, Part A, 2018, 176, 92-98.	0.7	21
7	Screening for Protein-Protein Interaction Inhibitors Using a Bioluminescence Resonance Energy Transfer (BRET)–Based Assay in Yeast. SLAS Discovery, 2017, 22, 751-759.	1.4	14
8	The awakening of the CDK10/Cyclin M protein kinase. Oncotarget, 2017, 8, 50174-50186.	0.8	24
9	STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis. Cell Cycle, 2016, 15, 678-688.	1.3	33
10	From Peptide Aptamers to Inhibitors of FUR, Bacterial Transcriptional Regulator of Iron Homeostasis and Virulence. ACS Chemical Biology, 2016, 11, 2519-2528.	1.6	13
11	Tampering with Cell Division by Using Smallâ€Molecule Inhibitors of CDK–CKS Protein Interactions. ChemBioChem, 2015, 16, 432-439.	1.3	6
12	Tamoxifen Inhibits CDK5 Kinase Activity by Interacting with p35/p25 and Modulates the Pattern of Tau Phosphorylation. Chemistry and Biology, 2015, 22, 472-482.	6.2	33
13	CDK10/cyclin M is a protein kinase that controls ETS2 degradation and is deficient in STAR syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19525-19530.	3.3	73
14	Calcineurin A versus NS5A-TP2/HD Domain Containing 2: A Case Study of Site-directed Low-frequency Random Mutagenesis for Dissecting Target Specificity of Peptide Aptamers. Molecular and Cellular Proteomics, 2013, 12, 1939-1952.	2.5	1
15	Yeast two-hybrid methods and their applications in drug discovery. Trends in Pharmacological Sciences, 2012, 33, 109-118.	4.0	79
16	A small molecule screen in yeast identifies inhibitors targeting protein–protein interactions within the vaccinia virus replication complex. Antiviral Research, 2012, 96, 187-195.	1.9	11
17	Targeting cancer with peptide aptamers. Oncotarget, 2011, 2, 557-561.	0.8	34
18	First BRETâ€based screening assay performed in budding yeast leads to the discovery of CDK5/p25 interaction inhibitors. Biotechnology Journal, 2011, 6, 860-870.	1.8	30

PIERRE COLAS

#	Article	IF	CITATIONS
19	Peptides and Aptamers Targeting HSP70: A Novel Approach for Anticancer Chemotherapy. Cancer Research, 2011, 71, 484-495.	0.4	150
20	Inhibition of vaccinia virus replication by peptide aptamers. Antiviral Research, 2009, 82, 134-140.	1.9	15
21	Peptide Aptamers for Small Molecule Drug Discovery. Methods in Molecular Biology, 2009, 535, 373-388.	0.4	26
22	The eleven-year switch of peptide aptamers. , 2008, 7, 2.		34
23	High-Throughput Screening Assays to Discover Small-Molecule Inhibitors of Protein Interactions. Current Drug Discovery Technologies, 2008, 5, 190-199.	0.6	34
24	A RasGAP SH3 Peptide Aptamer Inhibits RasGAP-Aurora Interaction and Induces Caspase-Independent Tumor Cell Death. PLoS ONE, 2008, 3, e2902.	1.1	14
25	An Antiproliferative Genetic Screening Identifies a Peptide Aptamer That Targets Calcineurin and Up-regulates Its Activity. Molecular and Cellular Proteomics, 2007, 6, 451-459.	2.5	16
26	A Comparative Analysis of Perturbations Caused by a Gene Knock-out, a Dominant Negative Allele, and a Set of Peptide Aptamers. Molecular and Cellular Proteomics, 2007, 6, 2110-2121.	2.5	19
27	Selection and characterization of large collections of peptide aptamers through optimized yeast two-hybrid procedures. Nature Protocols, 2006, 1, 1066-1091.	5.5	50
28	Peptide aptamers as guides for small-molecule drug discovery. Drug Discovery Today, 2006, 11, 334-341.	3.2	114
29	Combinatorial protein reagents to manipulate protein function. Current Opinion in Chemical Biology, 2000, 4, 54-59.	2.8	55
30	The impact of two-hybrid and related methods on biotechnology. Trends in Biotechnology, 1998, 16, 355-363.	4.9	46
31	Meiotic maturation in mollusc oocytes. Seminars in Cell and Developmental Biology, 1998, 9, 539-548.	2.3	48
32	Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature, 1996, 380, 548-550.	13.7	469
33	The oocyte metaphase arrest. , 1995, 1, 299-308.		4
34	Protein Synthesis Controls Cyclin Stability in Metaphase I-Arrested Oocytes of Patella vulgata. Experimental Cell Research, 1993, 208, 518-521.	1.2	19
35	Cyclin A-Cys41 does not undergo cell cycle-dependent degradation inXenopusextracts. FEBS Letters, 1992, 306, 90-93.	1.3	44
36	Peptide Aptamers. , 0, , 1368-1372.		1