
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11663005/publications.pdf Version: 2024-02-01

7HICCN LIN

#	Article	IF	CITATIONS
1	Screening and prioritizing substances in groundwater in the Beijing–Tianjin–Hebei region of the North China Plain based on exposure and hazard assessments. Journal of Hazardous Materials, 2022, 423, 127142.	12.4	8
2	Resistance risk induced by quorum sensing inhibitors and their combined use with antibiotics: Mechanism and its relationship with toxicity. Chemosphere, 2021, 265, 129153.	8.2	23
3	In-situ and ex-situ measurement of hydrophobic organic contaminants in soil air based on passive sampling: PAH exchange kinetics, non-equilibrium correction and comparison with traditional estimations. Journal of Hazardous Materials, 2021, 410, 124646.	12.4	4
4	Spatial variation, water quality, and health risk assessment of trace elements in groundwater in Beijing and Shijiazhuang, North China Plain. Environmental Science and Pollution Research, 2021, 28, 57046-57059.	5.3	15
5	Investigations on the influence of energy source on time-dependent hormesis: A case study of sulfadoxine to Aliivibrio fischeri in different cultivation systems. Science of the Total Environment, 2021, 775, 145877.	8.0	15
6	Hormetic dose-responses for silver antibacterial compounds, quorum sensing inhibitors, and their binary mixtures on bacterial resistance of Escherichia coli. Science of the Total Environment, 2021, 786, 147464.	8.0	8
7	Regular time-dependent cross-phenomena induced by hormesis: A case study of binary antibacterial mixtures to Aliivibrio fischeri. Ecotoxicology and Environmental Safety, 2020, 187, 109823.	6.0	18
8	Hormesis-induced gap between the guidelines and reality in ecological risk assessment. Chemosphere, 2020, 243, 125348.	8.2	16
9	Hormetic dose-dependent response about typical antibiotics and their mixtures on plasmid conjugative transfer of Escherichia coli and its relationship with toxic effects on growth. Ecotoxicology and Environmental Safety, 2020, 205, 111300.	6.0	20
10	Insights into the role of energy source in hormesis through diauxic growth of bacteria in mixed cultivation systems. Chemosphere, 2020, 261, 127669.	8.2	13
11	Similarities between the Yin/Yang Doctrine and Hormesis in Toxicology and Pharmacology. Trends in Pharmacological Sciences, 2020, 41, 544-556.	8.7	15
12	A trigger mechanism of herbicides to phytoplankton blooms: From the standpoint of hormesis involving cytochrome b559, reactive oxygen species and nitric oxide. Water Research, 2020, 173, 115584.	11.3	32
13	Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. Journal of Agricultural and Food Chemistry, 2020, 68, 5024-5038.	5.2	238
14	Air-soil diffusive exchange of PAHs in an urban park of Shanghai based on polyethylene passive sampling: Vertical distribution, vegetation influence and diffusive flux. Science of the Total Environment, 2019, 689, 734-742.	8.0	14
15	A deep insight into the toxic mechanism for sulfonamides based on bacterial cell-cell communication. Environment International, 2019, 129, 185-193.	10.0	9
16	Combination of sulfonamides, silver antimicrobial agents and quorum sensing inhibitors as a preferred approach for improving antimicrobial efficacy against Bacillus subtilis. Ecotoxicology and Environmental Safety, 2019, 181, 43-48.	6.0	10
17	QSAR-based investigation on antibiotics facilitating emergence and dissemination of antibiotic resistance genes: A case study of sulfonamides against mutation and conjugative transfer in Escherichia coli. Environmental Research, 2019, 173, 87-96.	7.5	18
18	Time-Dependent Toxicities of Quorum Sensing Inhibitors to <i>Aliivibrio fischeri</i> and <i>Bacillus subtilis</i> . Dose-Response, 2019, 17, 155932581882293.	1.6	3

#	Article	IF	CITATIONS
19	Novel brominated flame retardants in house dust from Shanghai, China: levels, temporal variation, and human exposure. Environmental Sciences Europe, 2019, 31, .	5.5	24
20	Multiple-species hormetic phenomena induced by indole: A case study on the toxicity of indole to bacteria, algae and human cells. Science of the Total Environment, 2019, 657, 46-55.	8.0	24
21	Hormetic mechanism of sulfonamides on Aliivibrio fischeri luminescence based on a bacterial cell-cell communication. Chemosphere, 2019, 215, 793-799.	8.2	9
22	Mechanistic explanation of time-dependent cross-phenomenon based on quorum sensing: A case study of the mixture of sulfonamide and quorum sensing inhibitor to bioluminescence of Aliivibrio fischeri. Science of the Total Environment, 2018, 630, 11-19.	8.0	37
23	A study on the role that quorum sensing play in antibiotic-resistant plasmid conjugative transfer in Escherichia coli. Ecotoxicology, 2018, 27, 209-216.	2.4	21
24	A comparative study on the binary and ternary mixture toxicity of antibiotics towards three bacteria based on QSAR investigation. Environmental Research, 2018, 162, 127-134.	7.5	28
25	Occurrence of polybrominated diphenyl ethers in floor and elevated surface house dust from Shanghai, China. Environmental Science and Pollution Research, 2018, 25, 18049-18058.	5.3	16
26	A swinging seesaw as a novel model mechanism for time-dependent hormesis under dose-dependent stimulatory and inhibitory effects: A case study on the toxicity of antibacterial chemicals to Aliivibrio fischeri. Chemosphere, 2018, 205, 15-23.	8.2	27
27	Hormesis as a mechanistic approach to understanding herbal treatments in traditional Chinese medicine. , 2018, 184, 42-50.		63
28	A QSAR-based mechanistic study on the combined toxicity of antibiotics and quorum sensing inhibitors against Escherichia coli. Journal of Hazardous Materials, 2018, 341, 438-447.	12.4	32
29	Polybrominated diphenyl ethers and its methoxylated analogues in biota and sediment samples from two freshwater lakes in Yangtze River delta. Environmental Earth Sciences, 2017, 76, 1.	2.7	8
30	Interaction effects and mechanism of Pb pollution and soil microorganism in the presence of earthworm. Chemosphere, 2017, 173, 227-234.	8.2	21
31	Solving model of temperature and humidity profiles in spray cooling zone. Building and Environment, 2017, 123, 189-199.	6.9	31
32	A Mechanism-based QSTR Model for Acute to Chronic Toxicity Extrapolation: A Case Study of Antibiotics on Luminous Bacteria. Scientific Reports, 2017, 7, 6022.	3.3	12
33	The biochemical and toxicological responses of earthworm (Eisenia fetida) following exposure to nanoscale zerovalent iron in a soil system. Environmental Science and Pollution Research, 2017, 24, 2507-2514.	5.3	38
34	Bioaccumulation and toxic effects of decabromodiphenyl ether in theÂpresence of nanoscale zero-valent iron in an earthworm–soil system. Chemosphere, 2017, 169, 78-88.	8.2	20
35	An analogous wood barrel theory to explain the occurrence of hormesis: A case study of sulfonamides and erythromycin on Escherichia coli growth. PLoS ONE, 2017, 12, e0181321.	2.5	9
36	A new parameter for the stimulation effect and its application in the prediction of the hormetic effect in chemical mixtures. RSC Advances, 2016, 6, 114698-114706.	3.6	3

#	Article	IF	CITATIONS
37	Mechanism Underlying Time-dependent Cross-phenomenon between Concentration-response Curves and Concentration Addition Curves: A Case Study of Sulfonamides-Erythromycin mixtures on Escherichia coli. Scientific Reports, 2016, 6, 33718.	3.3	8
38	Mechanism-based QSAR Models for the Toxicity of Quorum Sensing Inhibitors to Gram-negative and Gram-positive Bacteria. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 145-150.	2.7	6
39	The Comparison of the Combined Toxicity between Gramâ€negative and Gramâ€positive Bacteria: a Case Study of Antibiotics and Quorumâ€sensing Inhibitors. Molecular Informatics, 2016, 35, 54-61.	2.5	12
40	The mixture toxicity of environmental contaminants containing sulfonamides and other antibiotics in Escherichia coli: Differences in both the special target proteins of individual chemicals and their effective combined concentration. Chemosphere, 2016, 158, 193-203.	8.2	33
41	Similarities and differences in combined toxicity of sulfonamides and other antibiotics towards bacteria for environmental risk assessment. Environmental Monitoring and Assessment, 2016, 188, 429.	2.7	12
42	Time-dependent hormesis of chemical mixtures: A case study on sulfa antibiotics and a quorum-sensing inhibitor of Vibrio fischeri. Environmental Toxicology and Pharmacology, 2016, 41, 45-53.	4.0	29
43	Prediction of mixture toxicity from the hormesis of a single chemical: A case study of combinations of antibiotics and quorum-sensing inhibitors with gram-negative bacteria. Chemosphere, 2016, 150, 159-167.	8.2	25
44	Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both?. Journal of Hazardous Materials, 2016, 308, 328-334.	12.4	261
45	The joint effects of sulfonamides and quorum sensing inhibitors on Vibrio fischeri : Differences between the acute and chronic mixed toxicity mechanisms. Journal of Hazardous Materials, 2016, 310, 56-67.	12.4	16
46	Novel approach for predicting the joint effects based on the enzyme-catalyzed kinetics. Journal of Hazardous Materials, 2016, 307, 359-367.	12.4	3
47	What are the differences between aerobic and anaerobic toxic effects of sulfonamides on Escherichia coli ?. Environmental Toxicology and Pharmacology, 2016, 41, 251-258.	4.0	9
48	A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae. Environmental Toxicology and Pharmacology, 2015, 40, 948-953.	4.0	1
49	Development of a New Decision Tree to Rapidly Screen Chemical Estrogenic Activities of <i>Xenopus laevis</i> . Molecular Informatics, 2014, 33, 115-123.	2.5	0
50	Balance between herbicidal activity and toxicity effect: A case study of the joint effects of triazine and phenylurea herbicides on Selenastrum capricornutum and Photobacterium phosphoreum. Aquatic Toxicology, 2014, 150, 165-174.	4.0	20
51	Study on the variation rules of the joint effects for multicomponent mixtures containing cyanogenic toxicants and aldehydes based on the transition state theory. Journal of Hazardous Materials, 2014, 267, 98-108.	12.4	4
52	Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles. Chemosphere, 2014, 108, 70-75.	8.2	38
53	Combined effects of aqueous suspensions of fullerene and humic acid on the availability of polycyclic aromatic hydrocarbons: Evaluated with negligible depletion solid-phase microextraction. Science of the Total Environment, 2014, 493, 12-21.	8.0	19
54	The joint effects on Photobacterium phosphoreum of metal oxide nanoparticles and their most likely coexisting chemicals in the environment. Aquatic Toxicology, 2014, 154, 200-206.	4.0	33

#	Article	IF	CITATIONS
55	The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum. Toxicology and Applied Pharmacology, 2013, 272, 551-558.	2.8	8
56	A docking-based receptor library of antibiotics and its novel application in predicting chronic mixture toxicity for environmental risk assessment. Environmental Monitoring and Assessment, 2013, 185, 4513-4527.	2.7	22
57	Using molecular docking-based binding energy to predict toxicity of binary mixture with different binding sites. Chemosphere, 2013, 92, 1169-1176.	8.2	30
58	Novel approach to predicting hormetic effects of antibiotic mixtures on Vibrio fischeri. Chemosphere, 2013, 90, 2070-2076.	8.2	42
59	Efficient Oxidative Debromination of Decabromodiphenyl Ether by TiO ₂ -Mediated Photocatalysis in Aqueous Environment. Environmental Science & Technology, 2013, 47, 518-525.	10.0	98
60	Quantitative Structure Activity Relationships (QSAR) for Binary Mixtures at Non-Equitoxic Ratios Based on Toxic Ratios-Effects Curves. Dose-Response, 2013, 11, dose-response.1.	1.6	17
61	Using Molecular Docking to Compare Toxicity of Reactive Chemicals to Freshwater and Marine Luminous Bacteria. Molecular Informatics, 2012, 31, 809-816.	2.5	13
62	Using molecular docking between organic chemicals and lipid membrane to revise the well known octanol–water partition coefficient of the mixture. Environmental Toxicology and Pharmacology, 2012, 34, 59-66.	4.0	13
63	Model of Hormesis and Its Toxicity Mechanism Based on Quorum Sensing: A Case Study on the Toxicity of Sulfonamides to <i>Photobacterium phosphoreum</i> . Environmental Science & 2012, 46, 7746-7754.	10.0	79
64	The joint effects of sulfonamides and their potentiator on Photobacterium phosphoreum: Differences between the acute and chronic mixture toxicity mechanisms. Chemosphere, 2012, 86, 30-35.	8.2	86
65	Efficient degradation of organic pollutants with ferrous hydroxide colloids as heterogeneous Fenton-like activator of hydrogen peroxide. Chemosphere, 2012, 87, 111-117.	8.2	41
66	Influence factors of multicomponent mixtures containing reactive chemicals and their joint effects. Chemosphere, 2012, 88, 994-1000.	8.2	33
67	Atomic charges of individual reactive chemicals in binary mixtures determine their joint effects: An example of cyanogenic toxicants and aldehydes. Environmental Toxicology and Chemistry, 2012, 31, 270-278.	4.3	15
68	Application of the Similarity Parameter (λ) to Prediction of the Joint Effects of Nonequitoxic Mixtures. Archives of Environmental Contamination and Toxicology, 2012, 62, 195-209.	4.1	8
69	Study of water quality and eutrophication in Sanya coastal zone. , 2011, , .		0
70	Hydrophobicity-dependent QSARs to predict the toxicity of perfluorinated carboxylic acids and their mixtures. Environmental Toxicology and Pharmacology, 2011, 32, 259-265.	4.0	29
71	The research and application of spray cooling technology in Shanghai Expo. Applied Thermal Engineering, 2011, 31, 3726-3735.	6.0	41
72	TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon, 2011, 49, 2693-2701.	10.3	538

#	Article	IF	CITATIONS
73	Toxicity Prediction of Antibiotics on Luminescent Bacteria, Photobacterium phosphoreum, Based on Their Quantitative Structure–Activity Relationship Models. Bulletin of Environmental Contamination and Toxicology, 2010, 85, 550-555.	2.7	26
74	Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrasonics Sonochemistry, 2010, 17, 526-533.	8.2	355
75	Preparation and photoelectrocatalytic properties of titania/carbon nanotube composite films. Carbon, 2010, 48, 3369-3375.	10.3	57
76	QSAR for Predicting Joint Toxicity of Halogenated Benzenes to Dicrateria zhanjiangensis. Bulletin of Environmental Contamination and Toxicology, 2008, 81, 525-530.	2.7	4
77	A simple hydrophobicity-based approach to predict the toxicity of unknown organic micropollutant mixtures in marine water. Marine Pollution Bulletin, 2005, 50, 617-623.	5.0	6
78	Prediction of the toxicological joint effects between cyanogenic toxicants and aldehydes toPhotobacterium phosphoreum. QSAR and Combinatorial Science, 2005, 24, 354-363.	1.4	6
79	Influence of hydroxypropylcyclodextrins on the toxicity of mixtures. Chemosphere, 2005, 58, 1301-1306.	8.2	12
80	Mechanism of concentration addition toxicity: they are different for nonpolar narcotic chemicals, polar narcotic chemicals and reactive chemicals. Chemosphere, 2004, 54, 1691-1701.	8.2	24
81	Development of QSARs for Predicting the Joint Effects between Cyanogenic Toxicants and Aldehydes. Chemical Research in Toxicology, 2003, 16, 1365-1371.	3.3	18
82	Quantification of joint effect for hydrogen bond and development of QSARs for predicting mixture toxicity. Chemosphere, 2003, 52, 1199-1208.	8.2	29
83	Use of partition coefficients to predict mixture toxicity. Water Research, 2003, 37, 2223-2227.	11.3	17
84	Mechanism of the Synergistic Toxicity of Malononitrile and p -Nitrobenzaldehyde with Photobacterium phosphoreum. Toxicology Mechanisms and Methods, 2003, 13, 241-245.	2.7	13
85	Prediction of mixture toxicity with its total hydrophobicity. Chemosphere, 2002, 46, 305-310.	8.2	34
86	Partitioning regularity of nonionic organic mixtures in organic phase/water system. Science Bulletin, 2001, 46, 1422-1425.	1.7	7