
Jesper Hjortnaes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11662764/publications.pdf Version: 2024-02-01

IESDED HIODTNAES

#	Article	IF	CITATIONS
1	Sarcomere Disassembly and Transfection Efficiency in Proliferating Human iPSC-Derived Cardiomyocytes. Journal of Cardiovascular Development and Disease, 2022, 9, 43.	1.6	5
2	Pirfenidone Has Anti-fibrotic Effects in a Tissue-Engineered Model of Human Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2022, 9, 854314.	2.4	16
3	Computed tomography follow-up after elective proximal aortic surgery: Less is more?. American Heart Journal, 2022, 249, 66-75.	2.7	0
4	Myocardial Disease and Long-Distance Space Travel: Solving the Radiation Problem. Frontiers in Cardiovascular Medicine, 2021, 8, 631985.	2.4	28
5	Advanced <i>In Vitro</i> Modeling to Study the Paradox of Mechanically Induced Cardiac Fibrosis. Tissue Engineering - Part C: Methods, 2021, 27, 100-114.	2.1	9
6	Massive expansion and cryopreservation of functional human induced pluripotent stem cell-derived cardiomyocytes. STAR Protocols, 2021, 2, 100334.	1.2	24
7	Editorial: Heart Valve Tissue Engineering: Are We Ready for Clinical Translation?. Frontiers in Cardiovascular Medicine, 2021, 8, 658719.	2.4	1
8	Superimposed Tissue Formation in Human Aortic Valve Disease: Differences between Regurgitant and Stenotic Valves. Journal of Cardiovascular Development and Disease, 2021, 8, 79.	1.6	2
9	Radiation Induces Valvular Interstitial Cell Calcific Response in an in vitro Model of Calcific Aortic Valve Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 687885.	2.4	6
10	Controlled delivery of gold nanoparticle-coupled miRNA therapeutics <i>via</i> an injectable self-healing hydrogel. Nanoscale, 2021, 13, 20451-20461.	5.6	15
11	Integrative Multi-Omics Analysis in Calcific Aortic Valve Disease Reveals a Link to the Formation of Amyloid-Like Deposits. Cells, 2020, 9, 2164.	4.1	15
12	The relation between systemic inflammation and incident cancer in patients with stable cardiovascular disease: a cohort study. European Heart Journal, 2019, 40, 3901-3909.	2.2	54
13	Lipoprotein(a) and Oxidized Phospholipids Promote Valve Calcification in Patients With AorticÂStenosis. Journal of the American College of Cardiology, 2019, 73, 2150-2162.	2.8	187
14	Anti-fibrotic Effects of Cardiac Progenitor Cells in a 3D-Model of Human Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2019, 6, 52.	2.4	27
15	Identification of thoracic injuries by emergency medical services providers among trauma patients. Injury, 2019, 50, 1036-1041.	1.7	6
16	Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics. Nanomaterials, 2018, 8, 296.	4.1	81
17	Oxygen-Generating Photo-Cross-Linkable Hydrogels Support Cardiac Progenitor Cell Survival by Reducing Hypoxia-Induced Necrosis. ACS Biomaterials Science and Engineering, 2017, 3, 1964-1971.	5.2	82
18	Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling. Advanced Healthcare Materials, 2017, 6, 1601434.	7.6	85

#	Article	IF	CITATIONS
19	Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models. Advanced Healthcare Materials, 2017, 6, 1600571.	7.6	25

Tissue Engineering: Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling (Adv.) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 702

21	Comparative Histopathological Analysis of Mitral Valves in Barlow Disease and Fibroelastic Deficiency. Seminars in Thoracic and Cardiovascular Surgery, 2016, 28, 757-767.	0.6	25
22	Simulation of early calcific aortic valve disease in a 3D platform: A role for myofibroblast differentiation. Journal of Molecular and Cellular Cardiology, 2016, 94, 13-20.	1.9	70
23	Mortality after cardiac surgery in patients with liver cirrhosis classified by the Child-Pugh score. Interactive Cardiovascular and Thoracic Surgery, 2015, 20, 520-530.	1.1	55
24	Valvular interstitial cells suppress calcification of valvular endothelial cells. Atherosclerosis, 2015, 242, 251-260.	0.8	135
25	Directing Valvular Interstitial Cell Myofibroblast‣ike Differentiation in a Hybrid Hydrogel Platform. Advanced Healthcare Materials, 2015, 4, 121-130.	7.6	66
26	Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials, 2014, 35, 7774-7785.	11.4	131
27	Visualizing novel concepts of cardiovascular calcification. Trends in Cardiovascular Medicine, 2013, 23, 71-79.	4.9	37
28	Surgical treatment of residual systolic anterior motion after otherwise successful percutaneous transluminal septal myocardial ablation: A case report. Journal of Thoracic and Cardiovascular Surgery, 2012, 144, 506-508.	0.8	0
29	Calcific Aortic Valve Disease. , 2011, , .		3
30	Intravital Molecular Imaging of Small-Diameter Tissue-Engineered Vascular Grafts in Mice: A Feasibility Study. Tissue Engineering - Part C: Methods, 2010, 16, 597-607.	2.1	35
31	Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. European Heart Journal, 2010, 31, 1975-1984.	2.2	180
32	Translating Autologous Heart Valve Tissue Engineering from Bench to Bed. Tissue Engineering - Part B: Reviews, 2009, 15, 307-317.	4.8	31
33	Microfabricated gels for tissue engineering. , 0, , 317-331.		0