Jesper Hjortnaes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11662764/publications.pdf Version: 2024-02-01

		393982	525886
33	1,436	19	27
papers	citations	h-index	g-index
33	33	33	2315
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lipoprotein(a) and Oxidized Phospholipids Promote Valve Calcification in Patients With AorticÂStenosis. Journal of the American College of Cardiology, 2019, 73, 2150-2162.	1.2	187
2	Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. European Heart Journal, 2010, 31, 1975-1984.	1.0	180
3	Valvular interstitial cells suppress calcification of valvular endothelial cells. Atherosclerosis, 2015, 242, 251-260.	0.4	135
4	Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials, 2014, 35, 7774-7785.	5.7	131
5	Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling. Advanced Healthcare Materials, 2017, 6, 1601434.	3.9	85
6	Oxygen-Generating Photo-Cross-Linkable Hydrogels Support Cardiac Progenitor Cell Survival by Reducing Hypoxia-Induced Necrosis. ACS Biomaterials Science and Engineering, 2017, 3, 1964-1971.	2.6	82
7	Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics. Nanomaterials, 2018, 8, 296.	1.9	81
8	Simulation of early calcific aortic valve disease in a 3D platform: A role for myofibroblast differentiation. Journal of Molecular and Cellular Cardiology, 2016, 94, 13-20.	0.9	70
9	Directing Valvular Interstitial Cell Myofibroblastâ€Like Differentiation in a Hybrid Hydrogel Platform. Advanced Healthcare Materials, 2015, 4, 121-130.	3.9	66
10	Mortality after cardiac surgery in patients with liver cirrhosis classified by the Child-Pugh score. Interactive Cardiovascular and Thoracic Surgery, 2015, 20, 520-530.	0.5	55
11	The relation between systemic inflammation and incident cancer in patients with stable cardiovascular disease: a cohort study. European Heart Journal, 2019, 40, 3901-3909.	1.0	54
12	Visualizing novel concepts of cardiovascular calcification. Trends in Cardiovascular Medicine, 2013, 23, 71-79.	2.3	37
13	Intravital Molecular Imaging of Small-Diameter Tissue-Engineered Vascular Grafts in Mice: A Feasibility Study. Tissue Engineering - Part C: Methods, 2010, 16, 597-607.	1.1	35
14	Translating Autologous Heart Valve Tissue Engineering from Bench to Bed. Tissue Engineering - Part B: Reviews, 2009, 15, 307-317.	2.5	31
15	Myocardial Disease and Long-Distance Space Travel: Solving the Radiation Problem. Frontiers in Cardiovascular Medicine, 2021, 8, 631985.	1.1	28
16	Anti-fibrotic Effects of Cardiac Progenitor Cells in a 3D-Model of Human Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2019, 6, 52.	1.1	27
17	Comparative Histopathological Analysis of Mitral Valves in Barlow Disease and Fibroelastic Deficiency. Seminars in Thoracic and Cardiovascular Surgery, 2016, 28, 757-767.	0.4	25
18	Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models. Advanced Healthcare Materials, 2017, 6, 1600571.	3.9	25

JESPER HJORTNAES

#	Article	IF	CITATIONS
19	Massive expansion and cryopreservation of functional human induced pluripotent stem cell-derived cardiomyocytes. STAR Protocols, 2021, 2, 100334.	0.5	24
20	Pirfenidone Has Anti-fibrotic Effects in a Tissue-Engineered Model of Human Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2022, 9, 854314.	1.1	16
21	Integrative Multi-Omics Analysis in Calcific Aortic Valve Disease Reveals a Link to the Formation of Amyloid-Like Deposits. Cells, 2020, 9, 2164.	1.8	15
22	Controlled delivery of gold nanoparticle-coupled miRNA therapeutics <i>via</i> an injectable self-healing hydrogel. Nanoscale, 2021, 13, 20451-20461.	2.8	15
23	Advanced <i>In Vitro</i> Modeling to Study the Paradox of Mechanically Induced Cardiac Fibrosis. Tissue Engineering - Part C: Methods, 2021, 27, 100-114.	1.1	9
24	Identification of thoracic injuries by emergency medical services providers among trauma patients. Injury, 2019, 50, 1036-1041.	0.7	6
25	Radiation Induces Valvular Interstitial Cell Calcific Response in an in vitro Model of Calcific Aortic Valve Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 687885.	1.1	6
26	Sarcomere Disassembly and Transfection Efficiency in Proliferating Human iPSC-Derived Cardiomyocytes. Journal of Cardiovascular Development and Disease, 2022, 9, 43.	0.8	5
27	Calcific Aortic Valve Disease. , 2011, , .		3
28	Superimposed Tissue Formation in Human Aortic Valve Disease: Differences between Regurgitant and Stenotic Valves. Journal of Cardiovascular Development and Disease, 2021, 8, 79.	0.8	2
29	Editorial: Heart Valve Tissue Engineering: Are We Ready for Clinical Translation?. Frontiers in Cardiovascular Medicine, 2021, 8, 658719.	1.1	1
30	Surgical treatment of residual systolic anterior motion after otherwise successful percutaneous transluminal septal myocardial ablation: A case report. Journal of Thoracic and Cardiovascular Surgery, 2012, 144, 506-508.	0.4	0
31	Microfabricated gels for tissue engineering. , 0, , 317-331.		0
32	Tissue Engineering: Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling (Adv.) Tj ETQq0 0 0 rgBT	- /Overlock	10 Tf 50 222

Computed tomography follow-up after elective proximal aortic surgery: Less is more?. American Heart 1.2 0

3