
Silvio Sammartano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1166261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation and stability of phytate complexes in solution. Coordination Chemistry Reviews, 2008, 252, 1108-1120.	18.8	180
2	Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. Coordination Chemistry Reviews, 2008, 252, 1093-1107.	18.8	169
3	On the possibility of determining the thermodynamic parameters for the formation of weak complexes using a simple model for the dependence on ionic strength of activity coefficients: Na+, K+, and Ca2+ complexes of low molecular weight ligands in aqueous solution. Journal of the Chemical Society Dalton Transactions. 1985 2353.	1.1	136
4	lonic strength dependence of formation constants. Alkali metal complexes of ethylenediaminetetraacetate nitrilotriacetate, diphosphate, and tripolyphosphate in aqueous solution. Analytical Chemistry, 1985, 57, 2956-2960.	6.5	111
5	Aqueous solution chemistry of alkyltin(IV) compounds for speciation studies in biological fluids and natural waters. Coordination Chemistry Reviews, 2012, 256, 222-239.	18.8	79
6	lonic strength dependence of formation constants—IProtonation constants of organic and inorganic acids. Talanta, 1983, 30, 81-87.	5.5	75
7	Advances in the investigation of dioxouranium(VI) complexes of interest for natural fluids. Coordination Chemistry Reviews, 2012, 256, 63-81.	18.8	74
8	Chelating Agents for the Sequestration of Mercury(II) and Monomethyl Mercury(II). Current Medicinal Chemistry, 2014, 21, 3819-3836.	2.4	74
9	A new approach in the use of SIT in determining the dependence on ionic strength of activity coefficients. Application to some chloride salts of interest in the speciation of natural fluids. Chemical Speciation and Bioavailability, 2004, 16, 105-110.	2.0	73
10	Speciation of phytate ion in aqueous solution. Alkali metal complex formation in different ionic media. Analytical and Bioanalytical Chemistry, 2003, 376, 1030-1040.	3.7	64
11	The inorganic speciation of tin(II) in aqueous solution. Geochimica Et Cosmochimica Acta, 2012, 87, 1-20.	3.9	63
12	Copper(II) complexes of N-(phosphonomethyl)glycine in aqueous solution: a thermodynamic and spectrophotometric study. Talanta, 1997, 45, 425-431.	5.5	61
13	Solubility and Activity Coefficients of Acidic and Basic Nonelectrolytes in Aqueous Salt Solutions. 2. Solubility and Activity Coefficients of Suberic, Azelaic, and Sebacic Acids in NaCl(aq), (CH3)4NCl(aq), and (C2H5)4NI(aq) at Different Ionic Strengths and att= 25 °C. Journal of Chemical & Engineering Data. 2006. 51, 1660-1667.	1.9	61
14	Hydrolysis of (CH3)2Sn2+in Different Ionic Media:Â Salt Effects and Complex Formation. Journal of Chemical & Engineering Data, 1996, 41, 511-515.	1.9	60
15	Polyacrylate Protonation in Various Aqueous Ionic Media at Different Temperatures and Ionic Strengths. Journal of Chemical & Engineering Data, 2000, 45, 876-881.	1.9	60
16	SIT Parameters for 1:1 Electrolytes and Correlation with Pitzer Coefficients. Journal of Solution Chemistry, 2006, 35, 1401-1415.	1.2	60
17	Ionic strength dependence of formation constants—XVIII. The hydrolysis of iron(III) in aqueous KNO3 solutions. Talanta, 1994, 41, 1577-1582.	5.5	57
18	Protonation of carbonate in aqueous tetraalkylammonium salts at 25°C. Talanta, 2006, 68, 1102-1112.	5.5	57

#	Article	IF	CITATIONS
19	The interaction of amino acids with the major constituents of natural waters at different ionic strengths. Marine Chemistry, 2000, 72, 61-76.	2.3	54
20	Salt effects on the protonation of ortho-phosphate between 10 and 50°C in aqueous solution. A complex formation model. Journal of Solution Chemistry, 1991, 20, 495-515.	1.2	52
21	Dependence on Ionic Strength of Protonation Enthalpies of Polycarboxylate Anions in NaCl Aqueous Solution. Journal of Chemical & Engineering Data, 2001, 46, 1417-1424.	1.9	51
22	Thermodynamics of Proton Binding of Halloysite Nanotubes. Journal of Physical Chemistry C, 2016, 120, 7849-7859.	3.1	49
23	Dependence on Ionic Strength of Polyamine Protonation in NaCl Aqueous Solution. Journal of Chemical & Engineering Data, 2001, 46, 1425-1435.	1.9	48
24	Sequestration of Hg ²⁺ by Some Biologically Important Thiols. Journal of Chemical & Engineering Data, 2011, 56, 4741-4750.	1.9	47
25	Ion association of Clâ^' with Na+, K+, Mg2+ and Ca2+ in aqueous solution at 10 ⩽ T ⩽ 45 ° C and 0 ⩽ lâ^'1. Thermochimica Acta, 1987, 115, 241-248.	/2 ậ©¹⁄2 : 2.9	1 mol 46
26	Thermodynamic parameters for the protonation of carboxylic acids in aqueous tetraethylammonium iodide solutions. Journal of Solution Chemistry, 1990, 19, 569-587.	1.2	45
27	Speciation of Phytate Ion in Aqueous Solution. Protonation Constants in Tetraethylammonium Iodide and Sodium Chloride. Journal of Chemical & Engineering Data, 2003, 48, 114-119.	1.9	45
28	Equilibrium studies in natural fluids: a chemical speciation model for the major constituents of sea water. Chemical Speciation and Bioavailability, 1994, 6, 65-84.	2.0	44
29	Polyacrylates in aqueous solution. The dependence of protonation on molecular weight, ionic medium and ionic strength. Reactive and Functional Polymers, 2003, 55, 9-20.	4.1	44
30	Calcium- and magnesium-EDTA complexes. Stability constants and their dependence on temperature and ionic strength. Thermochimica Acta, 1983, 61, 129-138.	2.7	43
31	The formation of proton and alkali-metal complexes with ligands of biological interest in aqueous solution. Part I. Potentiometric and calorimetric investigation of H+ and Na+ complexes with citrate, tartrate and malate. Thermochimica Acta, 1980, 36, 329-342.	2.7	42
32	Thermodynamic parameters for the binding of inorganic and organic anions by biogenic polyammonium cations. Talanta, 2001, 54, 1135-1152.	5.5	42
33	Protonation Constants of Ethylenediamine, Diethylenetriamine, and Spermine in NaCl(aq), Nal(aq), (CH3)4NCl(aq), and (C2H5)4Nl(aq) at Different Ionic Strengths and t = 25 ŰC. Journal of Chemical & Engineering Data, 2005, 50, 1917-1923.	1.9	42
34	Acidâ^'Base Properties of Synthetic and Natural Polyelectrolytes: Experimental Results and Models for the Dependence on Different Aqueous Media. Journal of Chemical & Engineering Data, 2009, 54, 589-605.	1.9	42
35	Sequestering Ability of Phytate toward Biologically and Environmentally Relevant Trivalent Metal Cations. Journal of Agricultural and Food Chemistry, 2012, 60, 8075-8082.	5.2	41
36	Formation and stability of zinc(II) and cadmium(II) citrate complexes in aqueous solution at various temperatures. Talanta, 1986, 33, 763-767.	5.5	40

#	Article	IF	CITATIONS
37	The calculation of equilibrium concentrations in large multimetal/multiligand systems. Analytica Chimica Acta, 1986, 191, 385-398.	5.4	40
38	Mixed metal complexes in solution. Thermodynamic and spectrophotometric study of copper(II)-citrate heterobinuclear complexes with nickel(II), zinc(II) or cadmium(II) in aqueous solution. Transition Metal Chemistry, 1988, 13, 87-91.	1.4	40
39	Hydrolysis and chemical speciation of dioxouranium(VI) ion in aqueous media simulating the major ion composition of seawater. Marine Chemistry, 2004, 85, 103-124.	2.3	40
40	Speciation of phytate ion in aqueous solution. Sequestration of magnesium and calcium by phytate at different temperatures and ionic strengths, in NaClaq. Biophysical Chemistry, 2006, 124, 18-26.	2.8	40
41	Solubility and activity coefficients of acidic and basic non-electrolytes in aqueous salt solutions. Fluid Phase Equilibria, 2008, 263, 43-54.	2.5	40
42	Electrochemical Study on the Stability of Phytate Complexes with Cu ²⁺ , Pb ²⁺ , Zn ²⁺ , and Ni ²⁺ : A Comparison of Different Techniques. Journal of Chemical & Engineering Data, 2010, 55, 4757-4767.	1.9	40
43	Modeling the acid–base properties of glutathione in different ionic media, with particular reference to natural waters and biological fluids. Amino Acids, 2012, 43, 629-648.	2.7	40
44	lonic strength dependence of formation constants. Part 4. Potentiometric study of the system Cu2+-Ni2+-citrate. Transition Metal Chemistry, 1984, 9, 385-390.	1.4	39
45	Solubility and Activity Coefficients of Acidic and Basic Nonelectrolytes in Aqueous Salt Solutions. 1. Solubility and Activity Coefficients ofo-Phthalic Acid andl-Cystine in NaCl(aq), (CH3)4NCl(aq), and (C2H5)4NI(aq) at Different Ionic Strengths and att= 25 °C. Journal of Chemical & Engineering Data, 2005. 50. 1761-1767.	1.9	38
46	Speciation of phytate ion in aqueous solution. Thermochimica Acta, 2004, 423, 63-69.	2.7	37
47	Interaction of Inorganic Mercury(II) with Polyamines, Polycarboxylates, and Amino Acids. Journal of Chemical & Engineering Data, 2009, 54, 893-903.	1.9	37
48	Thermodynamic parameters for the formation of glycine complexes with magnesium(II), calcium(II), lead(II), manganese(II), cobalt(II), nickel(II), zinc(II) and cadmium(II) at different temperatures and ionic strengths, with particular reference to natural fluid conditions. Thermochimica Acta, 1995, 255, 109-141.	2.7	35
49	Dependence on Ionic Strength of the Hydrolysis Constants for Dioxouranium(VI) in NaCl(aq) and NaNO3(aq), at pH < 6 andt= 25 °C. Journal of Chemical & Engineering Data, 2002, 47, 533-538.	1.9	35
50	Sequestering ability of polyaminopolycarboxylic ligands towards dioxouranium(VI) cation. Journal of Alloys and Compounds, 2006, 424, 93-104.	5.5	35
51	The Effect of Different Aqueous Ionic Media on the Acid-Base Properties of Some Open Chain Polyamines. Journal of Solution Chemistry, 2008, 37, 183-201.	1.2	35
52	Enhancement of hydrolysis through the formation of mixed hetero-metal species. Talanta, 2005, 65, 229-238.	5.5	34
53	Speciation of phytate ion in aqueous solution. Protonation constants and copper(II) interactions in NaNO3aq at different ionic strengths. Biophysical Chemistry, 2007, 128, 176-184.	2.8	34
54	Potentiometric, 1H NMR and ESI-MS investigation on dimethyltin(iv) cation–mercaptocarboxylate interaction in aqueous solution. New Journal of Chemistry, 2009, 33, 2286.	2.8	34

#	Article	IF	CITATIONS
55	Thermodynamics of metal complexes with ligand–ligand interaction, simple and mixed complexes of copper(II) and zinc(II) with adenosine 5′-triphosphate andL-tryptophan orL-alanine. Journal of the Chemical Society Dalton Transactions, 1983, , 1271-1278.	1.1	33
56	lonic-strength dependence of formation constants—XII A model for the effect of background on the protonation constants of amines and amino-acids. Talanta, 1989, 36, 903-907.	5.5	33
57	Effects of salt on the protonation in aqueous solution of triethylenetetramine and tetraethylenepentamine. Journal of Solution Chemistry, 1993, 22, 927-940.	1.2	33
58	Speciation of Phytate Ion in Aqueous Solution.â€Sequestering Ability toward Mercury(II) Cation in NaClaqat Different Ionic Strengths. Journal of Agricultural and Food Chemistry, 2006, 54, 1459-1466.	5.2	33
59	Modeling solubility, acid–base properties and activity coefficients of amoxicillin, ampicillin and (+)6-aminopenicillanic acid, in NaCl(aq) at different ionic strengths and temperatures. European Journal of Pharmaceutical Sciences, 2012, 47, 661-677.	4.0	33
60	Speciation of phytate ion in aqueous solution. Non covalent interactions with biogenic polyamines. Chemical Speciation and Bioavailability, 2003, 15, 29-36.	2.0	32
61	Modeling ATP protonation and activity coefficients in NaClaq and KClaq by SIT and Pitzer equations. Biophysical Chemistry, 2006, 121, 121-130.	2.8	32
62	Modelling of natural and synthetic polyelectrolyte interactions in natural waters by using SIT, Pitzer and Ion Pairing approaches. Marine Chemistry, 2006, 99, 93-105.	2.3	32
63	Solubility and Acid–Base Properties of Ethylenediaminetetraacetic Acid in Aqueous NaCl Solution at 0 ≤ti>l ≤ mol·kg ^{â^'1} and <i>T</i> = 298.15 K. Journal of Chemical & Engineering Data 2008, 53, 363-367.	a,1.9	32
64	Some thermodynamic properties of dl-Tyrosine and dl-Tryptophan. Effect of the ionic medium, ionic strength and temperature on the solubility and acid–base properties. Fluid Phase Equilibria, 2012, 314, 185-197.	2.5	32
65	Sequestering Ability of Oligophosphate Ligands toward Al ³⁺ in Aqueous Solution. Journal of Chemical & Engineering Data, 2017, 62, 3981-3990.	1.9	32
66	Binding of carboxylic ligands by protonated amines. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4219-4226.	1.7	31
67	Binding of polyanions by biogenic amines. I. Formation and stability of protonated putrescine and cadaverine complexes with inorganic anions. Talanta, 1998, 46, 1085-1093.	5.5	31
68	Hydrolysis and chemical speciation of (C2H5)2Sn2+, (C2H5)3Sn+ and (C3H7)3Sn+ in aqueous media simulating the major composition of natural waters. Applied Organometallic Chemistry, 2002, 16, 34-43.	3.5	31
69	Thermodynamics of metal complexes with ligand–ligand interaction. Mixed complexes of copper(II) and zinc(II) with adenosine 5′-triphosphate andL-histidine or histamine. Journal of the Chemical Society Dalton Transactions, 1984, , 1651-1658.	1.1	30
70	Quantitative parameters for the sequestering capacity of polyacrylates towards alkaline earth metal ions. Talanta, 2003, 61, 181-194.	5.5	30
71	Dioxouranium(VI)–carboxylate complexesA calorimetric and potentiometric investigation of interaction with oxalate at infinite dilution and in NaCl aqueous solution at I=1.0molLâ^1 and T=25°C. Talanta, 2007, 71, 948-963.	5.5	30
72	Speciation of Phytate Ion in Aqueous Solution. Thermodynamic Parameters for Zinc(II) Sequestration at Different Ionic Strengths and Temperatures. Journal of Solution Chemistry, 2009, 38, 115-134.	1.2	30

#	Article	IF	CITATIONS
73	Solubility and acid–base properties of concentrated phytate in self-medium and in NaClaq at T=298.15K. Journal of Chemical Thermodynamics, 2010, 42, 1393-1399.	2.0	30
74	Thermodynamics of proton binding and weak (Clâ^', Na+ and K+) species formation, and activity coefficients of 1,2-dimethyl-3-hydroxypyridin-4-one (deferiprone). Journal of Chemical Thermodynamics, 2014, 77, 98-106.	2.0	30
75	lonic Strength Dependence of Protonation Constants ofN-Alkyl Substituted Open Chain Diamines in NaClaq. Journal of Chemical & Engineering Data, 2004, 49, 109-115.	1.9	29
76	Formation and Stability of Cadmium(II)/Phytate Complexes by Different Electrochemical Techniques. Critical Analysis of Results. Journal of Solution Chemistry, 2010, 39, 179-195.	1.2	29
77	Acid–base and UV properties of some aminophenol ligands and their complexing ability towards Zn2+ in aqueous solution. Journal of Molecular Liquids, 2011, 159, 146-151.	4.9	29
78	Thermodynamics of HEDPA protonation in different media and complex formation with Mg2+ and Ca2+. Journal of Chemical Thermodynamics, 2013, 66, 151-160.	2.0	29
79	Acid–base and UV behavior of 3-(3,4-dihydroxyphenyl)-propenoic acid (caffeic acid) and complexing ability towards different divalent metal cations in aqueous solution. Journal of Molecular Liquids, 2014, 195, 9-16.	4.9	29
80	Thermodynamics of metal complexes with ligand—ligand interaction. Mixed complexes of copper(II) and zinc(II) with adenosine 5′-triphosphate and l-phenylalanine or l-tyrosine. Thermochimica Acta, 1984, 74, 77-86.	2.7	28
81	lonic strength dependence of formation constants—XProton activity coefficients at various temperatures and ionic strengths and their use in the study of complex equilibria. Talanta, 1987, 34, 593-598.	5.5	28
82	Medium and Alkyl Chain Effects on the Protonation of Dicarboxylates in NaCl(aq)and Et4NI(aq)at 25°C. Journal of Solution Chemistry, 2004, 33, 499-528.	1.2	28
83	Acidâ \in "Base Properties and Alkali and Alkaline Earth Metal Complex Formation in Aqueous Solution of Diethylenetriamine- <i>N</i> , <i>N<td>3.7</td><td>28</td></i>	3.7	28
84	Chemical speciation of amino acids in electrolyte solutions containing major components of natural fluids. Chemical Speciation and Bioavailability, 1995, 7, 1-8.	2.0	27
85	Hydrolysis of (CH3)3Sn+ in Various Salt Media. Journal of Solution Chemistry, 1999, 28, 959-972.	1.2	27
86	Speciation of phytate ion in aqueous solution. Characterisation of Ca-phytate sparingly soluble species. Chemical Speciation and Bioavailability, 2004, 16, 53-59.	2.0	27
87	Enhancement of Hydrolysis through the Formation of Mixed Hetero-Metal Species: Dioxouranium(VI) - Cadmium(II) Mixtures. Annali Di Chimica, 2005, 95, 767-778.	0.6	27
88	Modeling S-carboxymethyl-l-cysteine protonation and activity coefficients in sodium and tetramethylammonium chloride aqueous solutions by SIT and Pitzer equations. Fluid Phase Equilibria, 2007, 252, 119-129.	2.5	27
89	Thermodynamic and spectroscopic study for the interaction of dimethyltin(IV) with L–cysteine in aqueous solution. Biophysical Chemistry, 2008, 133, 19-27.	2.8	27
90	Sequestering ability of polycarboxylic ligands towards dioxouranium(VI). Talanta, 2008, 75, 775-785.	5.5	27

#	Article	IF	CITATIONS
91	Composition, Distribution, and Sources of Polycyclic Aromatic Hydrocarbons in Sediments of the Gulf of Milazzo (Mediterranean Sea, Italy). Polycyclic Aromatic Compounds, 2014, 34, 397-424.	2.6	27
92	The formation of proton and alkali metal complexes with ligands of biological interest in aqueous solution. Thermodynamics of Li+, Na+ and K+-dicarboxylate complex formation. Thermochimica Acta, 1983, 62, 101-112.	2.7	26
93	Hydrolysis of (CH3)Hg+in Different Ionic Media:Â Salt Effects and Complex Formation. Journal of Chemical & Engineering Data, 1998, 43, 957-960.	1.9	26
94	The single salt approximation for the major components of seawater: association and acid–base properties. Chemical Speciation and Bioavailability, 1998, 10, 27-30.	2.0	26
95	Modelling of proton and metal exchange in the alginate biopolymer. Analytical and Bioanalytical Chemistry, 2005, 383, 587-596.	3.7	26
96	Thermodynamic Protonation Parameters ofÂsomeÂSulfur-Containing Anions in NaClaq andÂ(CH3)4NClaq atÂt=25 °C. Journal of Solution Chemistry, 2009, 38, 1225-1245.	1.2	26
97	Methylmercury(ii)-sulfur containing ligand interactions: a potentiometric, calorimetric and 1H-NMR study in aqueous solution. New Journal of Chemistry, 2011, 35, 800.	2.8	26
98	Thermodynamics of Al3+-thiocarboxylate interaction in aqueous solution. Journal of Molecular Liquids, 2016, 222, 614-621.	4.9	26
99	Hydrolysis of methyltin(IV) trichloride in aqueous NaCl and NaNO3 solutions at different ionic strengths and temperatures. Applied Organometallic Chemistry, 1999, 13, 805-811.	3.5	25
100	Speciation of phytate ion in aqueous solution. Cadmium(II) interactions in aqueous NaCl at different ionic strengths. Analytical and Bioanalytical Chemistry, 2006, 386, 346-356.	3.7	25
101	Activity coefficients, acid–base properties and weak Na+ ion pair formation of some resorcinol derivatives. Fluid Phase Equilibria, 2010, 292, 71-79.	2.5	25
102	Total and Specific Solubility and Activity Coefficients of Neutral Species of (CH ₂) _{2<i>i</i>â²/2} N _{<i>i</i>} (CH ₂ COOH) _{<i>i</i>+2in Aqueous NaCl Solutions at Different Ionic Strengths, (0 â‰釋i>I&mai>1<}	ub>Comp	lexons 25
103	Potentiometric, Calorimetric, and ¹ H NMR Investigation on Hg ²⁺ -Mercaptocarboxylate Interaction in Aqueous Solution. Journal of Chemical & Engineering Data, 2011, 56, 1995-2004.	1.9	25
104	Study of Al 3+ interaction with AMP , ADP and ATP in aqueous solution. Biophysical Chemistry, 2018, 234, 42-50.	2.8	25
105	The formation of proton and alkali-metal complexes with ligands of biological interest in aqueous solution. Thermodynamics of H+, Na+ and K+—oxalate complexes. Thermochimica Acta, 1981, 46, 103-116.	2.7	24
106	Studies on sulphate complexes. Part I. Potentiometric investigation of Li+, Na+, K+, Rb+ and Cs+ complexes at 37 °C and 0.03 â ©½ I â ©½ 0.5. Inorganica Chimica Acta, 1982, 63, 267-272.	2.4	24
107	Thermodynamic Parameters for the Protonation of Poly(allylamine) in Concentrated LiCl(aq) and NaCl(aq). Journal of Chemical & Engineering Data, 2004, 49, 658-663.	1.9	24
108	Thermodynamic and spectroscopic study of the binding of dimethyltin(IV) by citrate at 25 ŰC. Applied Organometallic Chemistry, 2006, 20, 425-435.	3.5	24

#	Article	IF	CITATIONS
109	Solubility and activity coefficients of 2,2′-bipyridyl, 1,10-phenanthroline and 2,2′,6′,2″-terpyridine in NaCl(aq) at different ionic strengths and T=298.15K. Fluid Phase Equilibria, 2008, 272, 47-52.	2.5	24
110	Quantitative study on the interaction of Sn2+ and Zn2+ with some phosphate ligands, in aqueous solution at different ionic strengths. Journal of Molecular Liquids, 2012, 165, 143-153.	4.9	24
111	Speciation of tin(II) in aqueous solution: thermodynamic and spectroscopic study of simple and mixed hydroxocarboxylate complexes. Monatshefte Für Chemie, 2013, 144, 761-772.	1.8	24
112	Acid–Base Properties, Solubility, Activity Coefficients and Na+ Ion Pair Formation of Complexons in NaCl(aq) at Different Ionic Strengths. Journal of Solution Chemistry, 2013, 42, 1452-1471.	1.2	24
113	Sequestration of Aluminium(III) by different natural and synthetic organic and inorganic ligands in aqueous solution. Chemosphere, 2017, 186, 535-545.	8.2	24
114	The calculation of equilibrium concentrations. ES4EC1: A FORTRAN program for computing distribution diagrams and titration curves. Computers & Chemistry, 1989, 13, 343-359.	1.2	23
115	Thermodynamic parameters for the binding of ATP by protonated open-chain polyamines. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1091-1095.	1.7	23
116	Ionic Strength Dependence of Protonation Constants of Carboxylate Ions in NaClaq (0 ≤≤5.6) Tj ETQq0 0 Correlation between Them. Journal of Chemical & Engineering Data, 2010, 55, 904-911.	0 rgBT /C 1.9	verlock 10 Tf 23
117	Salt effects on the protonation of imidazole in aqueous solution at different ionic strengths: A tentative explanation by a complex formation model. Journal of Solution Chemistry, 1989, 18, 23-36.	1.2	22
118	Interaction of acrylic-maleic copolymers with H+, Na+, Mg2+ and Ca2+: Thermodynamic parameters and their dependence on medium. Reactive and Functional Polymers, 2005, 65, 329-342.	4.1	22
119	Modeling the Dependence on Medium and Ionic Strength of Glutathione Acidâ^'Base Behavior in LiClaq, NaClaq, KClaq, RbClaq, CsClaq, (CH3)4NClaq, and (C2H5)4NIaq. Journal of Chemical & Engineering Data, 2007, 52, 1028-1036.	1.9	22
120	Thermodynamics of binary and ternary interactions in the tin(II)/phytate system in aqueous solutions, in the presence of Clâ~' or Fâ~'. Journal of Chemical Thermodynamics, 2012, 51, 88-96.	2.0	22
121	Thermodynamic properties of melamine (2,4,6-triamino-1,3,5-triazine) in aqueous solution. Effect of ionic medium, ionic strength and temperature on the solubility and acid–base properties. Fluid Phase Equilibria, 2013, 355, 104-113.	2.5	22
122	Speciation of Cadmium in the Environment. Metal lons in Life Sciences, 2013, 11, 63-83.	2.8	22
123	Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant S,S-EDDS in biological fluids and natural waters. Chemosphere, 2016, 150, 341-356.	8.2	22
124	WECO: A computer program for calculating thermodynamic parameters of simple weak complexes. Temperature and ionic strength dependence of the ionic product of water and of hydrolysis constants of Na+ and Ca2+. Thermochimica Acta, 1984, 74, 343-355.	2.7	21
125	Ionic strength dependence of formation constants. Part 7. Protonation constants of low molecular weight carboxylic acids at 10, 25 and 45ŰC. Thermochimica Acta, 1985, 86, 273-280.	2.7	21
126	Quantitative study of the interactions of ATP with amines and amino acids. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1511-1518.	1.7	21

#	Article	IF	CITATIONS
127	The dependence on ionic strength of protonation constants of carboxylic acids in aqueous tetraethylammonium iodide solution, at different temperatures. Fluid Phase Equilibria, 1998, 149, 91-101.	2.5	21
128	Speciation of polyelectrolytes in natural fluids Protonation and interaction of polymethacrylates with major components of seawater. Talanta, 2002, 58, 405-417.	5.5	21
129	Speciation of phytate ion in aqueous solution. Dimethyltin(IV) interactions in NaClaq at different ionic strengths. Biophysical Chemistry, 2005, 116, 111-120.	2.8	21
130	Interaction of methyltin(IV) compounds with carboxylate ligands. Part 1: formation and stability of methyltin(IV)-carboxylate complexes and their relevance in speciation studies of natural waters. Applied Organometallic Chemistry, 2006, 20, 89-98.	3.5	21
131	Mixing effects on the protonation of polyacrylate in LiCl/KCl aqueous solutions at different ionic strengths, I=1 to 3.5Âmol Lâ^'1, at T=298.15ÂK. Journal of Molecular Liquids, 2008, 143, 129-133.	4.9	21
132	Interaction of Phytate with Ag ⁺ , CH ₃ Hg ⁺ , Mn ²⁺ , Fe ²⁺ , Co ²⁺ , and VO ²⁺ : Stability Constants and Sequestering Ability. Journal of Chemical & Engineering Data, 2012, 57, 2838-2847.	1.9	21
133	A critical approach to the toxic metal ion removal by hazelnut and almond shells. Environmental Science and Pollution Research, 2018, 25, 4238-4253.	5.3	21
134	Modeling solubility and acid-base properties of some polar side chain amino acids in NaCl and (CH 3) 4 NCl aqueous solutions at different ionic strengths and temperatures. Fluid Phase Equilibria, 2018, 459, 51-64.	2.5	21
135	The formation of proton and alkali-metal coplexes with ligands of biological interest in aqueous solution. Potentiometric and PMR investigation of Li+, Na+, K+, Rb+, Cs+ and NH+4 complexes with citrate. Inorganica Chimica Acta, 1981, 56, L45-L47.	2.4	20
136	Binding of polyanions by biogenic amines. II. Formation and stability of protonated putrescine and cadaverine complexes with carboxylic ligands. Talanta, 1998, 46, 1079-1084.	5.5	20
137	Title is missing!. Aquatic Geochemistry, 1999, 5, 381-398.	1.3	20
138	Speciation of trialkyltin(IV) cations in natural fluids. Marine Chemistry, 2004, 85, 157-167.	2.3	20
139	Speciation of organic matter in natural waters—interaction of polyacrylates and polymethacrylates with major cation components of seawater. Marine Chemistry, 2004, 86, 33-44.	2.3	20
140	Sit Parameters for 1:2 Electrolytes and Correlation with Pitzer Coefficients. Annali Di Chimica, 2007, 97, 85-95.	0.6	20
141	Experimental study and modelling of inorganic Cd2+ speciation in natural waters. Environmental Chemistry, 2011, 8, 320.	1.5	20
142	Potentiometric and spectrophotometric characterization of the UO ₂ ²⁺ -citrate complexes in aqueous solution, at different concentrations, ionic strengths and supporting electrolytes. Radiochimica Acta, 2012, 100, 13-28.	1.2	20
143	Mixed metal complexes in solution. Part 4. Formation and stability of heterobinuclear complexes of cadmium(II)-citrate with some bivalent metal ions in aqueous solution. Transition Metal Chemistry, 1985, 10, 11-14.	1.4	19
144	ΔG° and TΔS° charge relationships for the binding of carboxylic anions by open-chain polyammonium cations. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2395-2398.	1.7	19

#	Article	IF	CITATIONS
145	Binding of polyanions by biogenic amines. III. Formation and stability of protonated spermidine and spermine complexes with carboxylic ligands. Talanta, 1999, 48, 119-126.	5.5	19
146	Speciation of low molecular weight ligands in natural fluids: protonation constants and association of open chain polyamines with the major components of seawater. Analytica Chimica Acta, 2000, 418, 43-51.	5.4	19
147	Speciation of organotin compounds in NaCl aqueous solution: interaction of mono-, di- and tri-organotin(IV) cations with nucleotide 5′ monophosphates. Applied Organometallic Chemistry, 2004, 18, 653-661.	3.5	19
148	Dioxouranium(VI) – Carboxylate Complexes. Interaction with Dicarboxylic Acids in Alqueous Solution: Speciation and Structure. Annali Di Chimica, 2006, 96, 399-420.	0.6	19
149	Modeling of Protonation Constants of Linear Aliphatic Dicarboxylates Containing -S-Groups in Aqueous Chloride Salt Solutions, at Different Ionic Strengths, Using the SIT and Pitzer Equations and Empirical Relationships. Journal of Solution Chemistry, 2008, 37, 763-784.	1.2	19
150	Formation and stability of mixed Mg2+/Ca2+/phytate species in synthetic seawater media. Marine Chemistry, 2008, 112, 142-148.	2.3	19
151	Palladium(II) sequestration by phytate in aqueous solution - speciation analysis and ionic medium effects. Environmental Chemistry, 2010, 7, 259.	1.5	19
152	Modeling the acid-base properties of molybdate(VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations. Journal of Molecular Liquids, 2017, 229, 15-26.	4.9	19
153	A comparison of equations for fitting protonation constants of carboxylic acids in aqueous tetramethylammonium chloride at various ionic strengths. Journal of Solution Chemistry, 1997, 26, 631-648.	1.2	18
154	Speciation of poly-amino carboxylic compounds in seawater. Chemical Speciation and Bioavailability, 2003, 15, 75-86.	2.0	18
155	Interaction of UO22+ with ATP in aqueous ionic media. Biophysical Chemistry, 2005, 117, 147-153.	2.8	18
156	Speciation of phytate ion in aqueous solution. Protonation in CsClaq at different ionic strengths and mixing effects in LiClaq+CsClaq. Journal of Molecular Liquids, 2008, 138, 76-83.	4.9	18
157	Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution. Metal Ions in Life Sciences, 2016, 16, 133-166.	2.8	18
158	Complexing ability of pesticides and related compounds. Formation and stability in aqueous solution of H+ , Li+, Na+, K+, Mg2+ and Ca2+ phenoxyacetate complexes at different temperatures and ionic strengths. Thermochimica Acta, 1985, 95, 15-25.	2.7	17
159	Studies on hexacyanoferrate(II) complexes. Thermochimica Acta, 1986, 102, 1-14.	2.7	17
160	Protonation Constants and Association of Polycarboxylic Ligands with the Major Components of Seawater. Journal of Chemical & Engineering Data, 2000, 45, 996-1000.	1.9	17
161	Critical Evaluation of Protonation Constants. Literature Analysis and Experimental Potentiometric and Calorimetric Data for the Thermodynamics of Phthalate Protonation in Different Ionic Media. Journal of Solution Chemistry, 2006, 35, 1227-1244.	1.2	17
162	Sequestration of organometallic compounds by natural organic matter. binding of trimethyltin(IV) by fulvic and alginic acids. Applied Organometallic Chemistry, 2006, 20, 706-717.	3.5	17

#	Article	IF	CITATIONS
163	Thermodynamic data for lanthanoid(III) sequestration by phytate at different temperatures. Monatshefte Für Chemie, 2010, 141, 511-520.	1.8	17
164	Thermodynamic and spectroscopic study on Al 3+ -polycarboxylate interaction in aqueous solution. Journal of Molecular Liquids, 2017, 232, 45-54.	4.9	17
165	On the complexation of metal cations with "pure― diethylenetriamine-N,N,N′,N′′,N′′-pentakis(methylenephosphonic) acid. New Journal of Chemistry, 2 4065-4075.	018,41,	17
166	The formation of proton and alkali-metal complexes with ligands of biological interest in aqueous solution. Potentiometric and calorimetric investigation of H+, Na+ and K+ complexes with adenosine-5â€2-triphosphate. Inorganica Chimica Acta, 1981, 56, L11-L13.	2.4	16
167	Interactions of diethylenetriaminepentaacetic acid (dtpa) and triethylenetetraaminehexaacetic acid (ttha) with major components of natural waters. Analytical and Bioanalytical Chemistry, 2003, 375, 956-967.	3.7	16
168	Interaction of the Dioxouranium(VI) Ion with Aspartate and Glutamate in NaCl(aq) at Different Ionic Strengths. Journal of Chemical & amp; Engineering Data, 2005, 50, 1576-1581.	1.9	16
169	SIT Parameters for the Dependence of (Poly)carboxylate Activity Coefficients on Ionic Strength in (C ₂ H ₄) ₄ NI _{aq} (0 a‰¤i>I a‰¤.2 mol·kg ⁻¹) and (CH ₃) ₄ NCl _{aq} (0 a‰¤i>I a‰¤.9 mol·kg ⁻¹) in the Temperature Range 278 K a‰¤i>I	1.9	16
170	Chemical Camp, Engineering Data, 2007, 52, 2105-2200. Thermodynamic Study for the Protonation of Branched Poly(ethylenimine) in NaCl(aq) and Its Dependence on Ionic Strength. Journal of Chemical & Engineering Data, 2007, 52, 279-285.	1.9	16
171	On the Complexation of Cu(II) and Cd(II) With Polycarboxyl Ligands. Potentiometric Studies With ISE-H+, ISE-Cu2+, and ISE-Cd2+. Journal of Chemical & Engineering Data, 2010, 55, 714-722.	1.9	16
172	Solubility, activity coefficients and acid–base properties of three naphthol derivatives in NaCl(aq) at different ionic strengths and at T=298.15K. Journal of Molecular Liquids, 2011, 158, 50-56.	4.9	16
173	SALMO and S ₃ M: A Saliva Model and a Single Saliva Salt Model for Equilibrium Studies. Bioinorganic Chemistry and Applications, 2015, 2015, 1-12.	4.1	16
174	Solubility, protonation and activity coefficients of some aminobenzoic acids in NaClaq and (CH3)4NClaq, at different salt concentrations, at T= 298.15 K. Journal of Molecular Liquids, 2015, 212, 825-832.	4.9	16
175	Thermodynamic solution properties of a biodegradable chelant (MGDA) and its interaction with the major constituents of natural fluids. Fluid Phase Equilibria, 2017, 434, 63-73.	2.5	16
176	Sequestering ability of phytate towards protonated BPEI and other polyammonium cations in aqueous solution. Biophysical Chemistry, 2008, 136, 108-114.	2.8	15
177	Zinc(II) complexes with hydroxocarboxylates and mixed metal species with tin(II) in different salts aqueous solutions at different ionic strengths: formation, stability, and weak interactions with supporting electrolytes. Monatshefte FÃ1/4r Chemie, 2015, 146, 527-540.	1.8	15
178	Modeling solubility and acid–base properties of some amino acids in aqueous NaCl and (CH3)4NCl aqueous solutions at different ionic strengths and temperatures. SpringerPlus, 2016, 5, 928.	1.2	15
179	Complexation of environmentally and biologically relevant metals with bifunctional 3-hydroxy-4-pyridinones. Journal of Molecular Liquids, 2020, 319, 114349.	4.9	15
180	EQUILIBRIUM STUDIES IN NATURAL WATERS:SPECIATION OF PHENOLIC COMPOUNDS IN SYNTHETIC SEAWATER AT DIFFERENT SALINITIES. Environmental Toxicology and Chemistry, 1995, 14, 767.	4.3	15

#	Article	IF	CITATIONS
181	Mixed proton complexes of aminoacids and carboxylic ligands in aqueous solution. Talanta, 1993, 40, 629-635.	5.5	14
182	Formation and stability of proton-amine-inorganic anion complexes in aqueous solution. Journal of Solution Chemistry, 1995, 24, 325-341.	1.2	14
183	Salt effects on the protonation of polymethacrylate and Na+, K+, Ca2+ complex formation. Fluid Phase Equilibria, 1999, 163, 127-137.	2.5	14
184	Interaction of Polyamines with Mg2+and Ca2+. Journal of Chemical & Engineering Data, 1999, 44, 744-749.	1.9	14
185	Binding of acrylic and sulphonic polyanions by open-chain polyammonium cations. Talanta, 2001, 53, 1241-1248.	5.5	14
186	Uranium(VI) sequestration by polyacrylic and fulvic acids in aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 2011, 289, 689-697.	1.5	14
187	Thermodynamics for Proton Binding of Pyridine in Different Ionic Media at Different Temperatures. Journal of Chemical & Engineering Data, 2014, 59, 143-156.	1.9	14
188	Thermodynamic Properties of O-Donor Polyelectrolytes: Determination of the Acid–Base and Complexing Parameters in Different Ionic Media at Different Temperatures. Journal of Chemical & Engineering Data, 2017, 62, 2676-2688.	1.9	14
189	A new bis-(3-hydroxy-4-pyridinone)-DTPA-derivative: Synthesis, complexation of di-/tri-valent metal cations and in vivo M3+ sequestering ability. Journal of Molecular Liquids, 2019, 281, 280-294.	4.9	14
190	Speciation Studies of Bifunctional 3-Hydroxy-4-Pyridinone Ligands in the Presence of Zn2+ at Different Ionic Strengths and Temperatures. Molecules, 2019, 24, 4084.	3.8	14
191	Understanding the Solution Behavior of Epinephrine in the Presence of Toxic Cations: A Thermodynamic Investigation in Different Experimental Conditions. Molecules, 2020, 25, 511.	3.8	14
192	Protonation thermodynamics of 2,2'-bipyridyl in aqueous solution. Salt effects and weak complex formation. Thermochimica Acta, 1993, 214, 325-338.	2.7	13
193	Protonation Constants, Activity Coefficients, and Chloride Ion Pair Formation of Some Aromatic Amino-Compounds in NaCl _{aq} (0 mol·kg ^{–1} ≤i>I ≤3 mol·kg ^{–1<i>T</i> = 298.15 K. Journal of Chemical & Engineering Data, 2012, 57, 1851-1859.}	up <i>.s</i>) at	13
194	Formation, stability and empirical relationships for the binding of Sn2+ by O-, N- and S-donor ligands. Journal of Molecular Liquids, 2014, 200, 329-339.	4.9	13
195	Thermodynamic Data for the Modeling of Lanthanoid(III) Sequestration by Reduced Glutathione in Aqueous Solution. Journal of Chemical & Engineering Data, 2015, 60, 192-201.	1.9	13
196	Sequestration of HEDPA , NTA and phosphonic NTA derivatives towards Al 3+ in aqueous solution. Journal of Molecular Liquids, 2018, 261, 96-106.	4.9	13
197	Bifunctional 3-hydroxy-4-pyridinones as effective aluminium chelators: synthesis, solution equilibrium studies and in vivo evaluation. Journal of Inorganic Biochemistry, 2018, 186, 116-129.	3.5	13
198	Iron Coordination Properties of Gramibactin as Model for the New Class of Diazeniumdiolate Based Siderophores. Chemistry - A European Journal, 2021, 27, 2724-2733.	3.3	13

#	Article	IF	CITATIONS
199	Interaction of N-acetyl-l-cysteine with Na+, Ca2+, Mg2+ and Zn2+. Thermodynamic aspects, chemical speciation and sequestering ability in natural fluids. Journal of Molecular Liquids, 2020, 319, 114164.	4.9	13
200	Solubility of some calcium-carboxylic ligand complexes in aqueous solution. Talanta, 1995, 42, 1651-1662.	5.5	12
201	The Dependence on Ionic Strength of Enthalpies of Protonation for Polyamines in NaCl(aq). Journal of Chemical & Engineering Data, 2002, 47, 1205-1212.	1.9	12
202	Interaction of methyltin(IV) compounds with carboxylate ligands. Part 2: formation thermodynamic parameters, predictive relationships and sequestering ability. Applied Organometallic Chemistry, 2008, 22, 30-38.	3.5	12
203	Sequestering Ability of Dicarboxylic Ligands Towards Dioxouranium(VI) in NaCl and KNO3 Aqueous Solutions at T=298.15ÂK. Journal of Solution Chemistry, 2009, 38, 1343-1356.	1.2	12
204	Dissociation Constants of Protonated Oxidized Glutathione in Seawater Media at Different Salinities. Aquatic Geochemistry, 2010, 16, 447-466.	1.3	12
205	Thermodynamic Study on the Protonation and Complexation of GLDA with Ca2+ and Mg2+ at Different Ionic Strengths and Ionic Media at 298.15 K. Journal of Chemical & Engineering Data, 2016, 61, 1895-1903.	1.9	12
206	Potentiometric, UV and 1 H NMR study on the interaction of penicillin derivatives with Zn(II) in aqueous solution. Biophysical Chemistry, 2017, 223, 1-10.	2.8	12
207	New bis-(3-hydroxy-4-pyridinone)-NTA-derivative: Synthesis, binding ability towards Ca2+, Cu2+, Zn2+, Al3+, Fe3+ and biological assays. Journal of Molecular Liquids, 2018, 272, 609-624.	4.9	12
208	Thermodynamic Study on the Interaction of Ampicillin and Amoxicillin with Ca ²⁺ in Aqueous Solution at Different Ionic Strengths and Temperatures. Journal of Chemical & Engineering Data, 2019, 64, 800-809.	1.9	12
209	Hydrolysis of dioxouranium(VI): a calorimetric study in NaClaq and NaClO4aq, at 25°C. Thermochimica Acta, 2004, 414, 185-189.	2.7	11
210	Dioxouranium(VI)-Carboxylate Complexes. Interaction of \$\${m OU}_{2}^{2+}\$\$ with 1,2,3,4,5,6-Benzenehexacarboxylate (Mellitate) in 0 ≤(NaCl a q) ≤1.0Âmol·L â°'1. Journal of Solution Chemistry, 2007, 36, 479-496.	1.2	11
211	Interaction of oxovanadium(IV) with carboxylic ligands in aqueous solution: A thermodynamic and visible spectrophotometric study. Journal of Molecular Liquids, 2008, 142, 57-63.	4.9	11
212	Sequestration of Alkyltin(IV) Compounds in Aqueous Solution: Formation, Stability, and Empirical Relationships for the Binding of Dimethyltin(IV) Cation by N- and O-Donor Ligands. Bioinorganic Chemistry and Applications, 2009, 2009, 1-17.	4.1	11
213	Palladium(II) Complexes of Aminopolycarboxylic Ligands in Aqueous Solution. Journal of Chemical & Engineering Data, 2011, 56, 4759-4771.	1.9	11
214	Quantitative study on the non-covalent interactions between ATP and caffeine, theophylline and theobromine in aqueous solution. Fluid Phase Equilibria, 2011, 308, 47-54.	2.5	11
215	Hydrolysis of Monomethyl-, Dimethyl-, and Trimethyltin(IV) Cations in Fairly Concentrated Aqueous Solutions at <i>I</i> = 1 mol·L ^{â^'1} (NaNO ₃) and <i>T</i> = 298.15 K. Evidence for the Predominance of Polynuclear Species. Journal of Chemical & Engineering Data, 2011, 56, 1108-1115.	1.9	11
216	Potentiometric, UV and 1 H NMR study on the interaction of Cu 2+ with ampicillin and amoxicillin in aqueous solution. Biophysical Chemistry, 2017, 224, 59-66.	2.8	11

#	Article	IF	CITATIONS
217	Thermodynamic study on 8-hydroxyquinoline-2-carboxylic acid as a chelating agent for iron found in the gut of Noctuid larvae. New Journal of Chemistry, 2018, 42, 8062-8073.	2.8	11
218	Studies on polyfunctional O-ligands. Solubility and thermal stability of 1,2,4,5-benzenetetracarboxylate complexes with alkali and alkaline earth metal ions. Thermochimica Acta, 1990, 173, 25-41.	2.7	10
219	Equilibrium studies in natural waters: Speciation of phenolic compounds in synthetic seawater at different salinities. Environmental Toxicology and Chemistry, 1995, 14, 767-773.	4.3	10
220	Binding of glyphosate by openâ€chain polyammonium cations. Environmental Toxicology and Chemistry, 1999, 18, 2131-2137.	4.3	10
221	The formation of sparingly soluble species of Ca2+ with carboxylic ligands: speciation and thermoanalysis. Talanta, 2003, 61, 611-620.	5.5	10
222	Phosphonic Derivatives of Nitrilotriacetic Acid as Sequestering Agents for Ca2+ in Aqueous Solution: A Speciation Study for Application in Natural Waters. ACS Earth and Space Chemistry, 2019, 3, 1942-1954.	2.7	10
223	Salt effects on the protonation of oxalate in aqueous NaCl, KCl and tetraethylammonium iodide solution at 5 â ©½ T â ©½ 50°C and 0 â ©½ I â ©½. 1 mol dmâ^3. Thermochimica Acta, 1992, 202, 133-149.	2.7	9
224	Stabilityâ^'Charge and Stabilityâ^'Structure Relationships in the Binding of Dicarboxylic Ligands by Open-Chain Polyammonium Cations. Journal of Chemical & Engineering Data, 2000, 45, 717-723.	1.9	9
225	Protonation thermodynamics of some aminophenol derivatives in NaCl(aq) (0⩽1⩽3mol·kgâ~`1) at T=298. Journal of Chemical Thermodynamics, 2012, 44, 154-162.	.15K. 2.0	9
226	Thermodynamic Parameters for the Interaction of Amoxicillin and Ampicillin with Magnesium in NaCl Aqueous Solution, at Different Ionic Strengths and Temperatures. Journal of Chemical & Engineering Data, 2017, 62, 1018-1027.	1.9	9
227	Mixed aminocarboxylic ligand complexes. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1619.	1.7	8
228	Thermodynamics of Proton Association of Polyacrylates and Polymethacrylates in NaCl(aq). Journal of Solution Chemistry, 2003, 32, 967-976.	1.2	8
229	The effect of the tetraalkylammonium salts on the protonation thermodynamics of the phytate anion. Fluid Phase Equilibria, 2014, 383, 126-133.	2.5	8
230	On the interaction of phytate with proton and monocharged inorganic cations in different ionic media, and modeling of acid-base properties at low ionic strength. Journal of Chemical Thermodynamics, 2015, 90, 51-58.	2.0	8
231	Thermodynamics (Solubility and Protonation Constants) of Risedronic Acid in Different Media and Temperatures (283.15–318.15ÂK). Journal of Solution Chemistry, 2017, 46, 1903-1927.	1.2	8
232	Solubility, acid-base properties and thermodynamics of interaction between three NTA-phosphonate derivatives and the main cationic components (H+, Na+, Mg2+ and Ca2+) of natural fluids. Journal of Chemical Thermodynamics, 2018, 123, 117-127.	2.0	8
233	Interaction of L-tartaric acid with alkaline metals and open chain polyammonium cations in aqueous solution. Dalton Transactions RSC, 2002, , 435-440.	2.3	7
234	Chemical speciation of organic matter in natural waters. Interaction of nucleotide 5' mono-, di- and triphosphates with major components of seawater. Chemical Speciation and Bioavailability, 2004, 16, 1-8.	2.0	7

#	Article	IF	CITATIONS
235	Mixing effects on the protonation of some polycarboxylates in NaClaq+KClaq at different ionic strengths. Talanta, 2007, 72, 1059-1065.	5.5	7
236	Dioxouranium(VI)-Carboxylate Complexes. Speciation of UO22+-1,2,3-Propanetricarboxylate System in NaClaq at Different Ionic Strengths and at T = 25 °C. Annali Di Chimica, 2007, 97, 163-175.	0.6	7
237	Speciation of chitosan–phosphate and chitosan–nucleotide systems in NaCI aqueous solution. Chemical Speciation and Bioavailability, 2010, 22, 99-107.	2.0	7
238	Sequestration of some biogenic amines and poly(allyl)amine by high molecular weight polycarboxylic ligands in aqueous solution. Journal of Molecular Liquids, 2010, 151, 138-144.	4.9	7
239	Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant MGDA in biological fluids and natural waters. Chemosphere, 2017, 183, 107-118.	8.2	7
240	Thermodynamic and spectroscopic study of Al 3+ interaction with glycine, l -cysteine and tranexamic acid in aqueous solution. Biophysical Chemistry, 2017, 230, 10-19.	2.8	7
241	A novel thermodynamic approach for the complexation study of toxic metal cations by a landfill leachate. New Journal of Chemistry, 2018, 42, 7640-7648.	2.8	7
242	Glucuronate complexes with Mg2+, Ca2+, Zn2+and Cd2+in aqueous chloride solution: a possible chemical speciation model for biochemical understanding. Chemical Speciation and Bioavailability, 1996, 8, 17-21.	2.0	6
243	Interaction of I-malic acid with alkaline metals and open chain polyammonium cations in aqueous solution. Talanta, 2001, 54, 25-36.	5.5	6
244	Chemical speciation of nucleotide 5′-monophosphates in the presence of biogenic amines. Chemical Speciation and Bioavailability, 2001, 13, 113-119.	2.0	6
245	Binding of fluoride and carbonate by open chain polyammonium cations. Talanta, 2004, 64, 510-517.	5.5	6
246	The Protonation of Polyacrylate in Seawater. Analysis of Concentration Effects. Annali Di Chimica, 2005, 95, 643-656.	0.6	6
247	Additivity Factors in the Binding of the Diethyltin(IV) Cation by Ligands Containing Amino and Carboxylic Groups at Different Ionic Strengths. Journal of Solution Chemistry, 2005, 34, 1211-1226.	1.2	6
248	Sequestration of biogenic amines by alginic and fulvic acids. Biophysical Chemistry, 2006, 122, 221-231.	2.8	6
249	Sequestration of organometallic compounds by synthetic and naturally occurring polycarboxylate ligands. Binding of monomethylmercury(II) by polyacrylic and alginic acids. Chemical Speciation and Bioavailability, 2007, 19, 129-140.	2.0	6
250	Speciation of chitosan with low and high molecular weight carboxylates in aqueous solution. Chemical Speciation and Bioavailability, 2009, 21, 81-91.	2.0	6
251	Medium Effect on the Acidâ^'Base Properties of Branched Polyethylenimine in Different Aqueous Electrolyte Solutions. Journal of Chemical & Engineering Data, 2009, 54, 502-510.	1.9	6
252	Binding Ability of Sodium Catechol Disulfonate (<i>Tiron</i>) toward Hg ²⁺ , CH ₃ Hg ⁺ , (CH ₃) ₃ Sn ⁺ , and (CH ₃) ₂ Sn ²⁺ Cations. Journal of Chemical & Engineering Data, 2012, 57, 3636-3643.	1.9	6

#	Article	IF	CITATIONS
253	Thermodynamic study of the non covalent interactions of phytate with xanthine derivatives and histamine in aqueous solution. Journal of Molecular Liquids, 2013, 178, 37-43.	4.9	6
254	Thermodynamics for proton binding of phytate in KNO3(aq) at different temperatures and ionic strengths. Thermochimica Acta, 2013, 566, 193-202.	2.7	6
255	Enhancement of Hydrolysis through the Formation of Mixed Heterometal Species: Al3+/CH3Sn3+ Mixtures. Journal of Chemical & Engineering Data, 2013, 58, 821-826.	1.9	6
256	Evaluation of the sequestering ability of different complexones towards Ag+ ion. Journal of Molecular Liquids, 2014, 199, 432-439.	4.9	6
257	Some Thermodynamic Properties of Aqueous 2-Mercaptopyridine-N-Oxide (Pyrithione) Solutions. Journal of Solution Chemistry, 2014, 43, 1093-1109.	1.2	6
258	Sequestering Ability of Aminopolycarboxylic (APCs) and Aminopolyphosphonic (APPs) Ligands Toward Palladium(II) in Aqueous Solution. Journal of Chemical & Engineering Data, 2014, 59, 1970-1983.	1.9	6
259	Acid–Base and Thermodynamic Properties of <scp>d</scp> -Gluconic Acid and Its Interaction with Sn ²⁺ and Zn ²⁺ . Journal of Chemical & Engineering Data, 2016, 61, 2040-2051.	1.9	6
260	Prediction of water solubility and Setschenow coefficients by tree-based regression strategies. Journal of Molecular Liquids, 2019, 282, 401-406.	4.9	6
261	Thermodynamic study on polyaspartic acid biopolymer in solution and prediction of its chemical speciation and bioavailability in natural fluids. Journal of Molecular Liquids, 2019, 274, 68-76.	4.9	6
262	Binding of Phosphate, Pyrophosphate, and Hexacyanoferrate(II) by FullyN-Methyl Substituted Polyammonium Cations in Aqueous Solution. Journal of Chemical & Engineering Data, 2004, 49, 133-137.	1.9	5
263	Mixing Effects on the Protonation of Polycarboxylates. Protonation of Benzenehexacarboxylate in LiClâ^KCl, NaClâ^KCl, NaClâ^LiCl, and LiClâ^CsCl Aqueous Solutions at <i>I</i> = 1 mol·L ^{â^1} and <i>T</i> = 298.15 K. Journal of Chemical & Engineering Data, 2009, 54, 2137-2139.	1.9	5
264	Interactions of Dioxouranium(VI) with Polyamines in Aqueous Solution. Journal of Chemical & Engineering Data, 2010, 55, 3044-3050.	1.9	5
265	Risedronate complexes with Mg2+, Zn2+, Pb2+, and Cu2+: Species thermodynamics and sequestering ability in NaCl(aq) at different ionic strengths and at TÂ=Â298.15ÂK. Journal of Molecular Liquids, 2021, 343, 117699.	4.9	5
266	Speciation of dimethyltin(Ⅳ) – and trimethyltin(Ⅳ) – carbocysteinate and – glutamate systems in aqueous media. Chemical Speciation and Bioavailability, 2008, 20, 137-148.	2.0	4
267	Sequestration of alkyltin(IV) cations by complexation with amino-polycarboxylic chelating agents. Journal of Molecular Liquids, 2013, 187, 74-82.	4.9	4
268	Phytate–molybdate(<scp>vi</scp>) interactions in NaCl _(aq) at different ionic strengths: unusual behaviour of the protonated species. New Journal of Chemistry, 2018, 42, 7671-7679.	2.8	4
269	Use of Gantrez Copolymers as Potential Chelating Agent for the Selective Sequestration of Metal Ions. Studies of the Interactions in Aqueous Solution at Different Ionic Strengths and Temperatures. Journal of Chemical & Engineering Data, 2018, 63, 4193-4204.	1.9	4
270	Thermodynamic Study on the Interaction of Nicotinic Acid with H+, Na+, Ca2+ and Mg2+ at Different Temperatures and Ionic Strengths. Journal of Solution Chemistry, 2019, 48, 1671-1684.	1.2	4

#	Article	IF	CITATIONS
271	8-Hydroxyquinoline-2-Carboxylic Acid as Possible Molybdophore: A Multi-Technique Approach to Define Its Chemical Speciation, Coordination and Sequestering Ability in Aqueous Solution. Biomolecules, 2020, 10, 930.	4.0	4
272	Title is missing!. Journal of Solution Chemistry, 2000, 29, 1101-1114.	1.2	3
273	Stabilityâ^'Charge and Stabilityâ^'Structure Relationships in the Binding of Tri- and Tetracarboxylic Ligands by Open-Chain Polyammonium Cations. Journal of Chemical & Engineering Data, 2001, 46, 1365-1370.	1.9	3
274	Equilibria involved in the diorganotin(IV) and triorganotin(IV) phosphomycin interaction in aqueous solution. Applied Organometallic Chemistry, 2007, 21, 455-461.	3.5	3
275	Quantitative Study of the Interaction between ATP and Aromatic Amines in Aqueous Solution. Journal of Solution Chemistry, 2012, 41, 1240-1253.	1.2	3
276	Thermodynamic study on the protonation of glycine in different (water+1-butyl-3-methylimidazolium) Tj ETQq0 0 163-169.	0 rgBT /C 2.0	overlock 10 Th 3
277	Thermodynamics of Zn2+ 2-mercaptopyridine-N-oxide and 2-hydroxypyridine-N-oxide interactions: Stability, solubility, activity coefficients and medium effects. Journal of Molecular Liquids, 2015, 211, 876-884.	4.9	3
278	Exploring various ligand classes for the efficient sequestration of stannous cations in the environment. Science of the Total Environment, 2018, 643, 704-714.	8.0	3
279	Thermodynamic Behavior of Polyalcohols and Speciation Studies in the Presence of Divalent Metal Cations. Journal of Chemical & Engineering Data, 2020, 65, 2805-2812.	1.9	3
280	N,N,N′,N′-Tetramethylethylenediammonium–succinate–succinic acid (1/1/1). Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, o287-o289.	0.4	2
281	Speciation of Phytate Ion in Aqueous Solution. Trimethyltin(IV) Interactions in Self Medium. Annali Di Chimica, 2007, 97, 635-645.	0.6	2
282	Binding of benzene-1,2,3,4,5,6-hexacarboxylate by polyammonium cations. Polyhedron, 2009, 28, 2703-2709.	2.2	2
283	Thermodynamic study on levulinic acid in NaCl, (C2H5)4NI and mixed MgCl2/NaCl and CaCl2/NaCl aqueous solutions at T = 298.15 K. Journal of Chemical Thermodynamics, 2019, 139, 105870.	2.0	2
284	Thermodynamic Study on the Protonation and Complexation of the Neuroleptic Drug, Gabapentin with Na+, Ca2+ and Mg2+ at Various Temperatures and Ionic Strengths. Journal of Solution Chemistry, 2020, 49, 1225-1236.	1.2	2
285	Modelling the Hydrolysis of Mixed Mono-, Di- and Trimethyltin(IV) Complexes in Aqueous Solutions. Journal of Solution Chemistry, 2015, 44, 1611-1625.	1.2	1
286	Polycarboxylic acids in sea water: acid–base properties, solubilities, activity coefficients, and complex formation constants at different salinities. Monatshefte Für Chemie, 2016, 147, 1481-1505.	1.8	1
287	Thermodynamic Study on the Protonation and Na+, Ca2+, Mg2+-Complexation of a Biodegradable Chelant (HEIDA) at Different Ionic Strengths and Temperatures. Journal of Solution Chemistry, 2018, 47, 528-543.	1.2	1
288	Complexation of Molybdenum(VI) with GLDA at Different Ionic Strengths. Journal of Solution Chemistry, 2018, 47, 1965-1979.	1.2	1

#	Article	IF	CITATIONS
289	Characterization of the thermodynamic properties of some benzenepolycarboxylic acids: Acid-base properties, weak complexes, total and neutral species solubility, solubility products in NaClaq, (CH3)4NClaq and Synthetic Sea Water (SSW). Fluid Phase Equilibria, 2019, 480, 41-52.	2.5	1
290	Nature as Resource. Thermodynamic characterization of natural and synthetic polymers and their sequestering ability towards some bivalent metal cations. Journal of Chemical Thermodynamics, 2020, 150, 106205.	2.0	1