
Bernhard Dold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11662323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. Journal of Geochemical Exploration, 2001, 74, 3-55.	1.5	308
2	Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. Journal of Geochemical Exploration, 2003, 80, 55-68.	1.5	246
3	Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings. Minerals (Basel, Switzerland), 2014, 4, 621-641.	0.8	205
4	A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu–Au deposits from the Punta del Cobre belt, northern Chile. Chemical Geology, 2002, 189, 135-163.	1.4	141
5	Acid rock drainage prediction: A critical review. Journal of Geochemical Exploration, 2017, 172, 120-132.	1.5	141
6	Sustainability in metal mining: from exploration, over processing to mine waste management. Reviews in Environmental Science and Biotechnology, 2008, 7, 275-285.	3.9	111
7	Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environmental Microbiology, 2007, 9, 298-307.	1.8	102
8	Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Applied Geochemistry, 2003, 18, 1531-1540.	1.4	100
9	Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn–Pb–(Ag–Bi–Cu) deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 2007, 92, 97-110.	1.5	93
10	Submarine Tailings Disposal (STD)—A Review. Minerals (Basel, Switzerland), 2014, 4, 642-666.	0.8	84
11	Geochemistry and stable isotope composition of fresh alkaline porphyry copper tailings: Implications on sources and mobility of elements during transport and early stages of deposition. Chemical Geology, 2008, 256, 62-76.	1.4	59
12	Element Flows Associated with Marine Shore Mine Tailings Deposits. Environmental Science & Technology, 2006, 40, 752-758.	4.6	51
13	Sulfur Speciation and Stable Isotope Trends of Water-Soluble Sulfates in Mine Tailings Profiles. Environmental Science & Technology, 2005, 39, 5650-5656.	4.6	48
14	Environmental and socioeconomic assessment of impacts by mining activities—a case study in the Certej River catchment, Western Carpathians, Romania. Environmental Science and Pollution Research, 2009, 16, 14-26.	2.7	44
15	Jarosite versus Soluble Iron-Sulfate Formation and Their Role in Acid Mine Drainage Formation at the Pan de Azúcar Mine Tailings (Zn-Pb-Ag), NW Argentina. Minerals (Basel, Switzerland), 2014, 4, 477-502.	0.8	43
16	Element cycling during the transition from alkaline to acidic environment in an active porphyry copper tailings impoundment, Chuquicamata, Chile. Journal of Geochemical Exploration, 2014, 140, 23-40.	1.5	38
17	Mine Waste Characterization, Management and Remediation. Minerals (Basel, Switzerland), 2015, 5, 82-85.	0.8	35
18	Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania. Journal of Hazardous Materials, 2011, 189, 624-639.	6.5	33

Bernhard Dold

#	Article	IF	CITATIONS
19	Water management for acid mine drainage control at the polymetallic Zn–Pb–(Ag–Bi–Cu) deposit Cerro de Pasco, Peru. Journal of Geochemical Exploration, 2009, 100, 133-141.	1.5	32
20	Low Molecular Weight Carboxylic Acids in Oxidizing Porphyry Copper Tailings. Environmental Science & Technology, 2005, 39, 2515-2521.	4.6	26
21	Basic Concepts in Environmental Geochemistry of Sulfidic Mine-Waste Management. , 0, , .		23
22	Stable Hydrogen and Oxygen Isotope Composition of Waters from Mine Tailings in Different Climatic Environments. Environmental Science & Technology, 2007, 41, 1870-1876.	4.6	22
23	Remediation of a Marine Shore Tailings Deposit and the Importance of Water–Rock Interaction on Element Cycling in the Coastal Aquifer. Environmental Science & Technology, 2011, 45, 4876-4883.	4.6	22
24	Sourcing of critical elements and industrial minerals from mine waste – The final evolutionary step back to sustainability of humankind?. Journal of Geochemical Exploration, 2020, 219, 106638.	1.5	20
25	Biogeometallurgical pre-mining characterization of ore deposits: an approach to increase sustainability in the mining process. Environmental Science and Pollution Research, 2013, 20, 7777-7786.	2.7	17
26	Dissimilatory bioreduction of iron(III) oxides by Shewanella loihica under marine sediment conditions. Marine Environmental Research, 2019, 151, 104782.	1.1	15
27	Origin and geochemistry of arsenic in surface and groundwaters of Los Pozuelos basin, Puna region, Central Andes, Argentina. Science of the Total Environment, 2019, 697, 134085.	3.9	15
28	Liberation of Adsorbed and Co-Precipitated Arsenic from Jarosite, Schwertmannite, Ferrihydrite, and Goethite in Seawater. Minerals (Basel, Switzerland), 2014, 4, 603-620.	0.8	14
29	Strontium (87Sr/86Sr) isotopes: A tracer for geochemical processes in mineralogically-complex mine wastes. Applied Geochemistry, 2018, 99, 42-54.	1.4	14
30	Seasonal fluctuations and geochemical modeling of acid mine drainage in the semi-arid Puna region: The Pan de Azúcar Pb–Ag–Zn mine, Argentina. Journal of South American Earth Sciences, 2021, 109, 103197.	0.6	14
31	Optimization and Quality Control of Automated Quantitative Mineralogy Analysis for Acid Rock Drainage Prediction. Minerals (Basel, Switzerland), 2017, 7, 12.	0.8	13
32	Geochemistry of highly acidic mine water following disposal into a natural lake with carbonate bedrock. Applied Geochemistry, 2010, 25, 1107-1119.	1.4	9
33	Evolution of Geochemical and Mineralogical Parameters during In Situ Remediation of a Marine Shore Tailings Deposit by the Implementation of a Wetland Cover. Minerals (Basel, Switzerland), 2014, 4, 578-602.	0.8	9
34	Mineralogical and Geochemical Controls in Biomining and Bioremediation. Soil Biology, 2014, , 119-135.	0.6	3
35	Release of trace elements during bioreductive dissolution of magnetite from metal mine tailings: Potential impact on marine environments. Science of the Total Environment, 2021, 788, 147579.	3.9	3
36	Dissolution kinetics and solubilities of copper sulfides in cyanide and hydrogen peroxide leaching: Applications to increase selective extractions. Journal of Geochemical Exploration, 2021, 230, 106848.	1.5	1