Jonathan P Dowling

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11662228/jonathan-p-dowling-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

180 11,156 46 103 h-index g-index citations papers 6.38 13,036 219 4.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
180	Emulating Quantum Teleportation of a Majorana Zero Mode Qubit. <i>Physical Review Letters</i> , 2021 , 126, 090502	7.4	5
179	Error suppression in adiabatic quantum computing with qubit ensembles. <i>Npj Quantum Information</i> , 2021 , 7,	8.6	2
178	Quantum gates for Majoranas zero modes in topological superconductors in one-dimensional geometry. <i>Physical Review B</i> , 2021 , 103,	3.3	1
177	Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet. <i>Npj Quantum Information</i> , 2021 , 7,	8.6	11
176	Efficient Simulation of Loop Quantum Gravity: A Scalable Linear-Optical Approach. <i>Physical Review Letters</i> , 2021 , 126, 020501	7.4	3
175	Entanglement-based quantum clock synchronization 2020,		1
174	Optimized Multilayer Structures With Ultrabroadband Near-Perfect Absorption. <i>IEEE Photonics Journal</i> , 2020 , 12, 1-10	1.8	4
173	Deterministic generation of hybrid high-N NOON states with Rydberg atoms trapped in microwave cavities. <i>Physical Review A</i> , 2020 , 101,	2.6	4
172	Towards classification of experimental Laguerrellaussian modes using convolutional neural networks. <i>Optical Engineering</i> , 2020 , 59, 1	1.1	7
171	Relativity of quantum states in entanglement swapping. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126301	2.3	1
170	Relativistic corrections to photonic entangled states for the space-based quantum network. <i>Physical Review A</i> , 2020 , 101,	2.6	1
169	Finding broken gates in quantum circuits: exploiting hybrid machine learning. <i>Quantum Information Processing</i> , 2020 , 19, 1	1.6	1
168	Quantum-Limited Squeezed Light Detection with a Camera. <i>Physical Review Letters</i> , 2020 , 125, 113602	7.4	2
167	Quantum teleportation of photonic qudits using linear optics. <i>Physical Review A</i> , 2019 , 100,	2.6	9
166	Entanglement-enhanced optical gyroscope. <i>New Journal of Physics</i> , 2019 , 21, 053010	2.9	16
165	Conclusive precision bounds for SU(1,1) interferometers. <i>Physical Review A</i> , 2019 , 99,	2.6	16
164	Experimental Gaussian Boson sampling. <i>Science Bulletin</i> , 2019 , 64, 511-515	10.6	30

163	Practical figures of merit and thresholds for entanglement distribution in quantum networks. <i>Physical Review Research</i> , 2019 , 1,	3.9	34
162	Optical angular momentum manipulations in a four-wave mixing process. Optics Letters, 2019, 44, 739-7	′ 4 ₃ 2	13
161	Demonstration of topologically path-independent anyonic braiding in a nine-qubit planar code. <i>Optica</i> , 2019 , 6, 264	8.6	9
160	Thresholded Quantum LIDAR: Exploiting Photon-Number-Resolving Detection. <i>Physical Review Letters</i> , 2019 , 123, 203601	7.4	19
159	Robust quantum network architectures and topologies for entanglement distribution. <i>Physical Review A</i> , 2018 , 97,	2.6	19
158	Orbital-angular-momentum-enhanced estimation of sub-Heisenberg-limited angular displacement with two-mode squeezed vacuum and parity detection. <i>Optics Express</i> , 2018 , 26, 16524-16534	3.3	8
157	Absolute calibration of single-photon and multiplexed photon-number-resolving detectors. <i>Physical Review A</i> , 2018 , 98,	2.6	12
156	Sub-shot-noise-limited phase estimation via SU(1,1) interferometer with thermal states. <i>Optics Express</i> , 2018 , 26, 18492-18504	3.3	13
155	Direct characterization of linear and quadratically nonlinear optical systems. <i>Physical Review A</i> , 2018 , 98,	2.6	2
154	Limits to atom-vapor-based room-temperature photon-number-resolving detection. <i>Physical Review A</i> , 2018 , 98,	2.6	1
153	Quantized nonlinear Gaussian-beam dynamics: Tailoring multimode squeezed-light generation. <i>Physical Review A</i> , 2018 , 98,	2.6	1
152	Remote quantum clock synchronization without synchronized clocks. <i>Npj Quantum Information</i> , 2018 , 4,	8.6	18
151	Phase estimation in an SU(1,1) interferometer with displaced squeezed states. <i>OSA Continuum</i> , 2018 , 1, 438	1.4	8
150	Nearly optimal measurement schemes in a noisy Mach-Zehnder interferometer with coherent and squeezed vacuum. <i>EPJ Quantum Technology</i> , 2017 , 4,	6.9	21
149	Linear optical quantum metrology with single photons: Experimental errors, resource counting, and quantum CramE-Rao bounds. <i>Physical Review A</i> , 2017 , 96,	2.6	18
148	Multiphoton Interference in Quantum Fourier Transform Circuits and Applications to Quantum Metrology. <i>Physical Review Letters</i> , 2017 , 119, 080502	7.4	39
147	Multipass configuration for improved squeezed vacuum generation in hot Rb vapor. <i>Physical Review A</i> , 2017 , 96,	2.6	4
146	Optimized aperiodic broadband visible absorbers. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 105003	1.7	10

145	Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer. <i>Physical Review A</i> , 2017 , 96,	2.6	25
144	Modeling the atomtronic analog of an optical polarizing beam splitter, a half-wave plate, and a quarter-wave plate for phonons of the motional state of two trapped atoms. <i>Physical Review A</i> , 2017 , 96,	2.6	1
143	Why a hole is like a beam splitter: A general diffraction theory for multimode quantum states of light. <i>Physical Review A</i> , 2017 , 96,	2.6	5
142	Room-temperature photon-number-resolved detection using a two-mode squeezer. <i>Physical Review A</i> , 2017 , 96,	2.6	3
141	Fundamental precision limit of a Mach-Zehnder interferometric sensor when one of the inputs is the vacuum. <i>Physical Review A</i> , 2017 , 96,	2.6	34
140	Multiparameter estimation with single photonslinearly-optically generated quantum entanglement beats the shotnoise limit. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 124002	1.7	15
139	Adaptive phase estimation with two-mode squeezed vacuum and parity measurement. <i>Physical Review A</i> , 2017 , 95,	2.6	20
138	Optimal digital dynamical decoupling for general decoherence via Walsh modulation. <i>Quantum Information Processing</i> , 2017 , 16, 1	1.6	3
137	Optimized mid-infrared thermal emitters for applications in aircraft countermeasures. <i>AIP Advances</i> , 2017 , 7, 125112	1.5	13
136	Spatial multimode structure of atom-generated squeezed light. <i>Physical Review A</i> , 2016 , 93,	2.6	10
135	Quantum phase representation of Heisenberg limits and a minimally resourced quantum phase estimator. <i>Physical Review A</i> , 2016 , 93,	2.6	1
134	Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates. <i>Physical Review A</i> , 2016 , 93,	2.6	18
133	Quantum-enhanced spectroscopy with entangled multiphoton states. <i>Physical Review A</i> , 2016 , 93,	2.6	10
132	On the connection between quantum nonlocality and phase sensitivity of two-mode entangled Fock state superpositions. <i>Quantum Information Processing</i> , 2016 , 15, 1025-1042	1.6	O
131	Efficient recycling strategies for preparing large Fock states from single-photon sources: Applications to quantum metrology. <i>Physical Review A</i> , 2016 , 94,	2.6	15
130	Phase sensitivity at the Heisenberg limit in an SU(1,1) interferometer via parity detection. <i>Physical Review A</i> , 2016 , 94,	2.6	48
129	Boson sampling with displaced single-photon Fock states versus single-photon-added coherent states: The quantum-classical divide and computational-complexity transitions in linear optics. <i>Physical Review A</i> , 2015 , 91,	2.6	25
128	Sampling arbitrary photon-added or photon-subtracted squeezed states is in the same complexity class as boson sampling. <i>Physical Review A</i> , 2015 , 91,	2.6	33

(2013-2015)

127	Preserving photon qubits in an unknown quantum state with Knill dynamical decoupling: Towards an all optical quantum memory. <i>Physical Review A</i> , 2015 , 91,	2.6	3	
126	Linear optical quantum metrology with single photons: exploiting spontaneously generated entanglement to beat the shot-noise limit. <i>Physical Review Letters</i> , 2015 , 114, 170802	7.4	69	
125	Non-Gaussian entangled states and quantum teleportation of Schrdinger-cat states. <i>Physica Scripta</i> , 2015 , 90, 074029	2.6	24	
124	QUANTUM OPTICS. The on-ramp to the all-optical quantum information processing highway. <i>Science</i> , 2015 , 349, 696	33.3	4	
123	Reducing the number of ancilla qubits and the gate count required for creating large controlled operations. <i>Quantum Information Processing</i> , 2015 , 14, 891-899	1.6	1	
122	Implementing BosonSampling with time-bin encoding: Analysis of loss, mode mismatch, and time jitter. <i>Physical Review A</i> , 2015 , 92,	2.6	12	
121	Quantum Hall effect with small numbers of vortices in Bose-Einstein condensates. <i>Physical Review A</i> , 2015 , 92,	2.6	5	
120	An Introduction to Boson-Sampling 2015 , 167-192		12	
119	Quantum Optical Technologies for Metrology, Sensing, and Imaging. <i>Journal of Lightwave Technology</i> , 2015 , 33, 2359-2370	4	67	
118	Evidence for the conjecture that sampling generalized cat states with linear optics is hard. <i>Physical Review A</i> , 2015 , 91,	2.6	19	
117	Optimized aperiodic highly directional narrowband infrared emitters. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2014 , 31, 1316	1.7	17	
116	Super-resolving single-photon number-path-entangled state and its generation. <i>Physical Review A</i> , 2014 , 89,	2.6	1	
115	On the uncertainty of the ordering of nonlocal wavefunction collapse when relativity is considered. <i>Quantum Studies: Mathematics and Foundations</i> , 2014 , 1, 57-64	0.6	1	
114	Inefficiency of classically simulating linear optical quantum computing with Fock-state inputs. <i>Physical Review A</i> , 2014 , 89,	2.6	15	
113	Scalable boson sampling with time-bin encoding using a loop-based architecture. <i>Physical Review Letters</i> , 2014 , 113, 120501	7.4	77	
112	Optimized aperiodic multilayer structures for use as narrow-angular absorbers. <i>Journal of Applied Physics</i> , 2014 , 116, 243101	2.5	20	
111	Quantum information transmission. Quantum Information Processing, 2013, 12, 899-906	1.6	12	
110	Phase estimation at the quantum CramE-Rao bound via parity detection. <i>Physical Review A</i> , 2013 , 87,	2.6	51	

109	Quantum random walks with multiphoton interference and high-order correlation functions. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2013 , 30, 1538	1.7	8
108	Super-resolving quantum radar: Coherent-state sources with homodyne detection suffice to beat the diffraction limit. <i>Journal of Applied Physics</i> , 2013 , 114, 193102	2.5	31
107	Effects of phase fluctuations on phase sensitivity and visibility of path-entangled photon Fock states. <i>Physical Review A</i> , 2013 , 88,	2.6	19
106	Spontaneous parametric down-conversion photon sources are scalable in the asymptotic limit for boson sampling. <i>Physical Review A</i> , 2013 , 88,	2.6	27
105	Dynamical decoupling with tailored wave plates for long-distance communication using polarization qubits. <i>Physical Review A</i> , 2013 , 88,	2.6	1
104	Quantum lithography: status of the field. <i>Quantum Information Processing</i> , 2012 , 11, 891-901	1.6	26
103	Single and biphoton imaging and high dimensional quantum communication. <i>Quantum Information Processing</i> , 2012 , 11, 925-948	1.6	О
102	Ultra-stable matterwave gyroscopy with counter-rotating vortex superpositions in BoseEinstein condensates. <i>Journal of Modern Optics</i> , 2012 , 59, 1180-1185	1.1	12
101	POPPERS THOUGHT EXPERIMENT REINVESTIGATED. International Journal of Quantum Information, 2012, 10, 1250033	0.8	4
100	Quantum-enhanced magnetometer with low-frequency squeezing. <i>Physical Review A</i> , 2012 , 86,	2.6	46
99	Strategies for choosing path-entangled number states for optimal robust quantum-optical metrology in the presence of loss. <i>Physical Review A</i> , 2012 , 86,	2.6	21
98	Dynamical decoupling in optical fibers: Preserving polarization qubits from birefringent dephasing. <i>Physical Review A</i> , 2012 , 85,	2.6	7
97	Phase-controlled entanglement in a quantum-beat laser: application to quantum lithography. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2011 , 44, 225504	1.3	10
96	Quantum Sensors, Computing, Metrology, and Imaging 2011 ,		1
95	Parity detection achieves the Heisenberg limit in interferometry with coherent mixed with squeezed vacuum light. <i>New Journal of Physics</i> , 2011 , 13, 083026	2.9	55
94	Coherent-light-boosted, sub-shot noise, quantum interferometry. New Journal of Physics, 2010 , 12, 083	30 <u>1</u> .4	87
93	Parity detection in quantum optical metrology without number-resolving detectors. <i>New Journal of Physics</i> , 2010 , 12, 113025	2.9	53
92	An invisible quantum tripwire. <i>New Journal of Physics</i> , 2010 , 12, 083012	2.9	4

(2007-2010)

91	Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. <i>Physical Review Letters</i> , 2010 , 104, 103602	7.4	231
90	Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2010 , 27, A170	1.7	45
89	Resolution and sensitivity of a Fabry-Perot interferometer with a photon-number-resolving detector. <i>Physical Review A</i> , 2009 , 80,	2.6	30
88	Maximal success probabilities of linear-optical quantum gates. <i>Physical Review A</i> , 2009 , 79,	2.6	29
87	Optimizing the multiphoton absorption properties of maximally path-entangled number states. <i>Physical Review A</i> , 2009 , 80,	2.6	4
86	An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography. <i>New Journal of Physics</i> , 2009 , 11, 113055	2.9	4
85	Optimization of quantum interferometric metrological sensors in the presence of photon loss. <i>Physical Review A</i> , 2009 , 80,	2.6	58
84	Quantum optical metrology Ithe lowdown on high-N00N states. Contemporary Physics, 2008, 49, 125-14	133.3	472
83	Entanglement-seeded, dual, optical parametric amplification: Applications to quantum imaging and metrology. <i>Physical Review A</i> , 2008 , 78,	2.6	25
82	Arbitrary coherent superpositions of quantized vortices in Bose-Einstein condensates via orbital angular momentum of light. <i>Physical Review A</i> , 2008 , 77,	2.6	35
81	Experimental sub-Rayleigh resolution by an unseeded high-gain optical parametric amplifier for quantum lithography. <i>Physical Review A</i> , 2008 , 77,	2.6	25
80	Entangled Fock states for robust quantum optical metrology, imaging, and sensing. <i>Physical Review A</i> , 2008 , 78,	2.6	158
79	Generating entangled photons from the vacuum by accelerated measurements: Quantum-information theory and the Unruh-Davies effect. <i>Physical Review A</i> , 2008 , 78,	2.6	16
78	Thermal radiation in photonic crystals. <i>Physical Review B</i> , 2007 , 75,	3.3	36
77	Improving solar cell efficiency using photonic band-gap materials. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 1599-1610	6.4	75
76	Linear optical quantum computing with photonic qubits. <i>Reviews of Modern Physics</i> , 2007 , 79, 135-174	40.5	1596
75	Engineering Quantum States of Light on Demand via Projective Measurements 2007, JTuB3		
74	Strong violations of Bell-type inequalities for path-entangled number states. <i>Physical Review A</i> , 2007 , 76,	2.6	37

73	General linear-optical quantum state generation scheme: Applications to maximally path-entangled states. <i>Physical Review A</i> , 2007 , 76,	2.6	25
72	Local and global distinguishability in quantum interferometry. <i>Physical Review Letters</i> , 2007 , 99, 070801	1 7.4	63
71	Efficient generation of large number-path entanglement using only linear optics and feed-forward. <i>Physical Review Letters</i> , 2007 , 99, 163604	7.4	63
70	Bootstrapping approach for generating maximally path-entangled photon states. <i>Physical Review Letters</i> , 2007 , 99, 053602	7.4	37
69	ALTERNATE SCHEME FOR OPTICAL CLUSTER-STATE GENERATION WITHOUT NUMBER-RESOLVING PHOTON DETECTORS. <i>International Journal of Quantum Information</i> , 2007 , 05, 617-626	0.8	O
68	Quantum interferometric sensors 2007,		5
67	Quantum states of light produced by a high-gain optical parametric amplifier for use in quantum lithography. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 270	1.7	15
66	High-fidelity linear optical quantum computing with polarization encoding. <i>Physical Review A</i> , 2006 , 73,	2.6	14
65	Heisenberg-limited measurements with superconducting circuits. <i>Physical Review A</i> , 2006 , 73,	2.6	2
64	Nonlinear tuning of 3D photonic band-gap structures for single-photon on demand sources. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2006 , 32, 484-487	3	2
63	Quantum lithography: A non-computing application of quantum information. <i>Computer Science - Research and Development</i> , 2006 , 21, 73-82		7
62	Exploiting the Quantum Zeno effect to beat photon loss in linear optical quantum information processors. <i>Optics Communications</i> , 2005 , 254, 374-379	2	7
61	Vortex phase qubit: generating arbitrary, counterrotating, coherent superpositions in Bose-Einstein condensates via optical angular momentum beams. <i>Physical Review Letters</i> , 2005 , 95, 173601	7.4	106
60	From linear optical quantum computing to Heisenberg-limited interferometry. <i>Journal of Optics B:</i> Quantum and Semiclassical Optics, 2004 , 6, S796-S800		5
59	Quantum lithography, entanglement and Heisenberg-limited parameter estimation. <i>Journal of Optics B: Quantum and Semiclassical Optics</i> , 2004 , 6, S811-S815		52
58	Towards photostatistics from photon-number discriminating detectors. <i>Journal of Modern Optics</i> , 2004 , 51, 1517-1528	1.1	27
57	Towards photostatistics from photon-number discriminating detectors 2004,		4
56	Quantum technology: the second quantum revolution. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2003 , 361, 1655-74	3	332

55	Suitability versus fidelity for rating single-photon guns. <i>Physical Review A</i> , 2003 , 67,	2.6	6
54	Construction of a quantum repeater with linear optics. <i>Physical Review A</i> , 2003 , 68,	2.6	36
53	Conditional linear-optical measurement schemes generate effective photon nonlinearities. <i>Physical Review A</i> , 2003 , 68,	2.6	24
52	All linear optical quantum memory based on quantum error correction. <i>Physical Review Letters</i> , 2003 , 91, 217901	7.4	38
51	Lorentz-invariant look at quantum clock-synchronization protocols based on distributed entanglement. <i>Physical Review A</i> , 2002 , 65,	2.6	34
50	Creation of large-photon-number path entanglement conditioned on photodetection. <i>Physical Review A</i> , 2002 , 65,	2.6	200
49	Linear optics and projective measurements alone suffice to create large-photon-number path entanglement. <i>Physical Review A</i> , 2002 , 65,	2.6	97
48	A quantum Rosetta stone for interferometry. <i>Journal of Modern Optics</i> , 2002 , 49, 2325-2338	1.1	306
47	Two-photon processes in faint biphoton fields. <i>Journal of Modern Optics</i> , 2002 , 49, 2349-2364	1.1	5
46	Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. <i>Physical Review A</i> , 2002 , 66,	2.6	141
45	Quantum Lithography 2002 , 391-397		
44	Quantum-interferometric optical lithography: Towards arbitrary two-dimensional patterns. <i>Physical Review A</i> , 2001 , 63,	2.6	88
43	Quantum clock synchronization based on shared prior entanglement. <i>Physical Review Letters</i> , 2000 , 85, 2010-3	7.4	208
42	Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. <i>Physical Review Letters</i> , 2000 , 85, 2733-6	7.4	1010
41	Modification of Planck blackbody radiation by photonic band-gap structures. <i>Physical Review A</i> , 1999 , 59, 4736-4746	2.6	126
40	Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope. <i>Physical Review A</i> , 1998 , 57, 4736-4746	2.6	220
39	Spontaneous emission and nonlinear effects in photonic bandgap materials. <i>Journal of Optics</i> , 1998 , 7, 393-407		38
38	The Classical Lamb Shift: Why Jackson Is Wrong!. NATO ASI Series Series B: Physics, 1997, 307-312		

37	Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures. <i>Physical Review A</i> , 1996 , 53, 2799-2803	2.6	118
36	Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures. <i>Physical Review E</i> , 1996 , 53, 4107-4121	2.4	416
35	Evanescent Light-Wave Atom Mirrors, Resonators, Waveguides, and Traps. <i>Advances in Atomic, Molecular and Optical Physics</i> , 1996 , 1-94	1.7	125
34	Factoring integers with YoungS N-slit interferometer. <i>Physical Review A</i> , 1996 , 53, 4587-4590	2.6	50
33	Spontaneous Emission and Nonlinear Effects in Photonic Band Gap Materials 1996 , 237-248		
32	Local Field Effects in Nonlinear and Quantum Optics 1996 , 271-280		
31	Schrdinger modal structure of cubical, pyramidal, and conical, evanescent light-wave gravitational atom traps. <i>Physical Review A</i> , 1995 , 52, 3997-4003	2.6	10
30	Pulse propagation near highly reflective surfaces: Applications to photonic band-gap structures and the question of superluminal tunneling times. <i>Physical Review A</i> , 1995 , 52, 726-734	2.6	25
29	Thin-film nonlinear optical diode. <i>Applied Physics Letters</i> , 1995 , 66, 2324-2326	3.4	236
28	Piezophotonic switching due to local field effects in a coherently prepared medium of three-level atoms. <i>Physical Review Letters</i> , 1994 , 73, 1789-1792	7·4	52
27	Wigner distribution of a general angular-momentum state: Applications to a collection of two-level atoms. <i>Physical Review A</i> , 1994 , 49, 4101-4109	2.6	173
26	Anomalous Index of Refraction in Photonic Bandgap Materials. <i>Journal of Modern Optics</i> , 1994 , 41, 345-	361	130
25	Photonic Band Calculations for Woodpile Structures. <i>Journal of Modern Optics</i> , 1994 , 41, 231-239	1.1	166
24	The photonic band edge laser: A new approach to gain enhancement. <i>Journal of Applied Physics</i> , 1994 , 75, 1896-1899	2.5	512
23	The photonic band edge optical diode. <i>Journal of Applied Physics</i> , 1994 , 76, 2023-2026	2.5	225
22	Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials. <i>Physical Review Letters</i> , 1994 , 73, 1368-1371	7.4	467
21	Quantum-noise limits to matter-wave interferometry. <i>Physical Review A</i> , 1993 , 48, 3186-3190	2.6	62
20	Dipole radiators in a cavity: A radio frequency analog for the modification of atomic spontaneous emission rates between mirrors. <i>American Journal of Physics</i> , 1993 , 61, 545-550	0.7	14

19	Near-dipole-dipole effects in dense media: Generalized Maxwell-Bloch equations. <i>Physical Review A</i> , 1993 , 47, 1247-1251	2.6	154
18	Near dipole-dipole effects in lasing without inversion: An enhancement of gain and absorptionless index of refraction. <i>Physical Review Letters</i> , 1993 , 70, 1421-1424	7.4	96
17	Spontaneous emission in cavities: How much more classical can you get?. <i>Foundations of Physics</i> , 1993 , 23, 895-905	1.2	36
16	Beat radiation from dipoles near a photonic band edge. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1993 , 10, 353	1.7	17
15	Band structure for neutral magnetic dipoles in a periodic magnetic field: A simple spin polarizer. <i>Physical Review Letters</i> , 1992 , 68, 3571-3574	7.4	12
14	Coulomb scattering near mirrors: Quantum corrections to the Rutherford formula. <i>Physical Review A</i> , 1992 , 45, 3121-3125	2.6	1
13	Sonic band structure in fluids with periodic density variations. <i>Journal of the Acoustical Society of America</i> , 1992 , 91, 2539-2543	2.2	59
12	The specular reflection of light off light. American Journal of Physics, 1992, 60, 28-34	0.7	1
11	Atomic emission rates in inhomogeneous media with applications to photonic band structures. <i>Physical Review A</i> , 1992 , 46, 612-622	2.6	138
10	Cavity QED and Classical Antenna Theory. <i>NATO ASI Series Series B: Physics</i> , 1992 , 165-172		
10	Cavity QED and Classical Antenna Theory. <i>NATO ASI Series Series B: Physics</i> , 1992 , 165-172 Radiation pattern of a classical dipole in a cavity. <i>Optics Communications</i> , 1991 , 82, 415-419	2	52
		2.6	5 ²
9	Radiation pattern of a classical dipole in a cavity. <i>Optics Communications</i> , 1991 , 82, 415-419		
9	Radiation pattern of a classical dipole in a cavity. <i>Optics Communications</i> , 1991 , 82, 415-419 Exponential decrease in phase uncertainty. <i>Physical Review A</i> , 1991 , 44, 3365-3368	2.6	27
9 8 7	Radiation pattern of a classical dipole in a cavity. <i>Optics Communications</i> , 1991 , 82, 415-419 Exponential decrease in phase uncertainty. <i>Physical Review A</i> , 1991 , 44, 3365-3368 A quantum state of ultra-low phase noise. <i>Optics Communications</i> , 1991 , 86, 119-122	2.6	27
9 8 7 6	Radiation pattern of a classical dipole in a cavity. <i>Optics Communications</i> , 1991 , 82, 415-419 Exponential decrease in phase uncertainty. <i>Physical Review A</i> , 1991 , 44, 3365-3368 A quantum state of ultra-low phase noise. <i>Optics Communications</i> , 1991 , 86, 119-122 Self-field quantum electrodynamics: The two-level atom. <i>Physical Review A</i> , 1990 , 41, 2284-2294 Quantum electrodynamics based on self-fields: On the origin of thermal radiation detected by an	2.6	27 12 26
9 8 7 6	Radiation pattern of a classical dipole in a cavity. <i>Optics Communications</i> , 1991 , 82, 415-419 Exponential decrease in phase uncertainty. <i>Physical Review A</i> , 1991 , 44, 3365-3368 A quantum state of ultra-low phase noise. <i>Optics Communications</i> , 1991 , 86, 119-122 Self-field quantum electrodynamics: The two-level atom. <i>Physical Review A</i> , 1990 , 41, 2284-2294 Quantum electrodynamics based on self-fields: On the origin of thermal radiation detected by an accelerating observer. <i>Physical Review A</i> , 1990 , 41, 2277-2283 Quantum electrodynamics based on self-fields, without second quantization: Apparatus dependent	2.6 2 2.6 2.6	27 12 26

1

Photonic quantum data locking. *Quantum - the Open Journal for Quantum Science*, 5, 447