
Zhishan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11661169/publications.pdf Version: 2024-02-01

7HISHAN LL

#	Article	IF	CITATIONS
1	Markedly Enhanced Oxygen Reduction Activity of Single-Atom Fe Catalysts via Integration with Fe Nanoclusters. ACS Nano, 2019, 13, 11853-11862.	14.6	340
2	Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Applied Catalysis B: Environmental, 2021, 284, 119740.	20.2	302
3	Metal–Organic Framework-Derived Hierarchical (Co,Ni)Se ₂ @NiFe LDH Hollow Nanocages for Enhanced Oxygen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 8106-8114.	8.0	214
4	Engineering phosphorus-doped LaFeO3-î´ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy, 2018, 47, 199-209.	16.0	202
5	Atomic Metal–Support Interaction Enables Reconstruction-Free Dual-Site Electrocatalyst. Journal of the American Chemical Society, 2022, 144, 1174-1186.	13.7	191
6	Rational Design of Cobalt–Iron Selenides for Highly Efficient Electrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 33833-33840.	8.0	140
7	Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery. Journal of Power Sources, 2017, 359, 340-348.	7.8	125
8	A Universal Method to Engineer Metal Oxide–Metal–Carbon Interface for Highly Efficient Oxygen Reduction. ACS Nano, 2018, 12, 3042-3051.	14.6	125
9	Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation. Nano Energy, 2018, 47, 275-284.	16.0	116
10	Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as high efficient bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2019, 425, 138-146.	7.8	110
11	Synergistic coupling of NiTe nanoarrays with RuO2 and NiFe-LDH layers for high-efficiency electrochemical-/photovoltage-driven overall water splitting. Applied Catalysis B: Environmental, 2020, 272, 118988.	20.2	101
12	Unraveling the high-activity nature of Fe–N–C electrocatalysts for the oxygen reduction reaction: the extraordinary synergy between Fe–N ₄ and Fe ₄ N. Journal of Materials Chemistry A, 2019, 7, 11792-11801.	10.3	84
13	An effective method for enhancing oxygen evolution kinetics of LaMO3 (M = Ni, Co, Mn) perovskite catalysts and its application to a rechargeable zinc–air battery. Applied Catalysis B: Environmental, 2020, 262, 118291.	20.2	75
14	Template-Directed Bifunctional Dodecahedral CoP/CN@MoS ₂ Electrocatalyst for High Efficient Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 36649-36657.	8.0	70
15	"Cuju―Structured Iron Diselenide-Derived Oxide: A Highly Efficient Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 40351-40359.	8.0	61
16	Ni nanoparticles@Ni–Mo nitride nanorod arrays: a novel 3D-network hierarchical structure for high areal capacitance hybrid supercapacitors. Nanoscale, 2017, 9, 18032-18041.	5.6	59
17	Nickel diselenide nanoflakes give superior urea electrocatalytic conversion. Electrochimica Acta, 2019, 297, 833-841.	5.2	59
18	Nickel-iron diselenide hollow nanoparticles with strongly hydrophilic surface for enhanced oxygen evolution reaction activity. Electrochimica Acta, 2018, 286, 172-178.	5.2	51

Zhishan Li

#	Article	IF	CITATIONS
19	Engineering the coupling interface of rhombic dodecahedral NiCoP/C@FeOOH nanocages toward enhanced water oxidation. Nanoscale, 2019, 11, 19959-19968.	5.6	48
20	Imbedding ultrafine Sb2S3 nanoparticles in mesoporous carbon sphere for high-performance lithium-ion battery. Electrochimica Acta, 2018, 290, 185-192.	5.2	45
21	Cation and Anion Co-doped Perovskite Nanofibers for Highly Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 41259-41268.	8.0	39
22	Achieving low-energy consumption water-to-hydrogen conversion via urea electrolysis over a bifunctional electrode of hierarchical cuprous sulfide@nickel selenide nanoarrays. Journal of Colloid and Interface Science, 2021, 592, 13-21.	9.4	33
23	Conductive metal–Organic frameworks endow high-efficient oxygen evolution of La0·6Sr0·4Co0·8Fe0·2O3 perovskite oxide nanofibers. Electrochimica Acta, 2020, 334, 135638.	5.2	25
24	Interfacial electron transfer on heterostructured Ni3Se4/FeOOH endows highly efficient water oxidation in alkaline solutions. Materials Today Energy, 2020, 17, 100462.	4.7	20
25	Electronic coupling regulation in yolk-shell nanostructured nickel-cobalt diselenides with octahedral coordination for boosted oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 28387-28396.	7.1	10
	Promoting photocatalytic hydrogen evolution over the perovskite oxide		

Promoting photocatalytic hydrogen evolution over the perovskite oxide Pr_{0.5}(Ba_{0.5}Sr_{0.5})_{0.5}Co_{0.8}Fe_{0.2}O<**s**ub>3</sub> by plasmon-induced hot electron injection. Nanoscale, 2020, 12, 18710-18720. 26