
Beth E Fisher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11660899/publications.pdf Version: 2024-02-01

Reth F Fished

#	Article	IF	CITATIONS
1	Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson's disease. Lancet Neurology, The, 2013, 12, 716-726.	10.2	571
2	The Effect of Exercise Training in Improving Motor Performance and Corticomotor Excitability in People With Early Parkinson's Disease. Archives of Physical Medicine and Rehabilitation, 2008, 89, 1221-1229.	0.9	360
3	Effects of Treadmill Exercise on Dopaminergic Transmission in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Mouse Model of Basal Ganglia Injury. Journal of Neuroscience, 2007, 27, 5291-5300.	3.6	284
4	Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. Journal of Neuroscience Research, 2004, 77, 378-390.	2.9	277
5	Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson's disease. NeuroReport, 2013, 24, 509-514.	1.2	181
6	Enhancing neuroplasticity in the basal ganglia: The role of exercise in Parkinson's disease. Movement Disorders, 2010, 25, S141-5.	3.9	165
7	Neural substrates of motor memory consolidation depend on practice structure. Nature Neuroscience, 2010, 13, 923-925.	14.8	156
8	Activity-Dependent Factors Affecting Poststroke Functional Outcomes. Topics in Stroke Rehabilitation, 2001, 8, 31-44.	1.9	97
9	Cortical Activation Associated with Muscle Synergies of the Human Male Pelvic Floor. Journal of Neuroscience, 2014, 34, 13811-13818.	3.6	52
10	Brain Connectivity Associated with Muscle Synergies in Humans. Journal of Neuroscience, 2015, 35, 14708-14716.	3.6	51
11	Contextual Interference Effect: Elaborative Processing or Forgetting—Reconstruction? A Post Hoc Analysis of Transcranial Magnetic Stimulation—Induced Effects on Motor Learning. Journal of Motor Behavior, 2008, 40, 578-586.	0.9	48
12	Aerobic Exercise to Improve Executive Function in Parkinson Disease. Journal of Neurologic Physical Therapy, 2013, 37, 58-64.	1.4	43
13	Eight Weeks of Aerobic Interval Training Improves Psychomotor Function in Patients with Parkinson's Disease—Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 2019, 16, 880.	2.6	35
14	Distributed representation of pelvic floor muscles in human motor cortex. Scientific Reports, 2018, 8, 7213.	3.3	30
15	Neural Correlate of the Contextual Interference Effect in Motor Learning: A Kinematic Analysis. Journal of Motor Behavior, 2009, 41, 232-242.	0.9	25
16	From Motor Learning to Physical Therapy and Back Again. Journal of Neurologic Physical Therapy, 2014, 38, 149-150.	1.4	24
17	Neural Correlates of the Contextual Interference Effect in Motor Learning: A Transcranial Magnetic Stimulation Investigation. Journal of Motor Behavior, 2010, 42, 223-232.	0.9	21
18	Evidence of altered corticomotor excitability following targeted activation of gluteus maximus training in healthy individuals. NeuroReport, 2016, 27, 415-421.	1.2	19

Beth E Fisher

#	Article	IF	CITATIONS
19	A comparison of seven different DTI-derived estimates of corticospinal tract structural characteristics in chronic stroke survivors. Journal of Neuroscience Methods, 2018, 304, 66-75.	2.5	18
20	Transfer of Motor Learning Engages Specific Neural Substrates During Motor Memory Consolidation Dependent on the Practice Structure. Journal of Motor Behavior, 2011, 43, 499-507.	0.9	17
21	The role of exercise in facilitating basal ganglia function in Parkinson's disease. Neurodegenerative Disease Management, 2011, 1, 157-170.	2.2	14
22	Method for Assessing Brain Changes Associated With Gluteus Maximus Activation. Journal of Orthopaedic and Sports Physical Therapy, 2013, 43, 214-221.	3.5	13
23	Improvement in Paretic Arm Reach-to-Grasp following Low Frequency Repetitive Transcranial Magnetic Stimulation Depends on Object Size: A Pilot Study. Stroke Research and Treatment, 2015, 2015, 1-13.	0.8	11
24	The motor cortical representation of a muscle is not homogeneous in brain connectivity. Experimental Brain Research, 2017, 235, 2767-2776.	1.5	9
25	Design and Development of a Virtual Reality-Based Mobility Training Game for People With Parkinson's Disease. Frontiers in Neurology, 2020, 11, 577713.	2.4	8
26	Identification of potential neuromotor mechanisms of manual therapy in patients with musculoskeletal disablement: rationale and description of a clinical trial. BMC Neurology, 2009, 9, 20.	1.8	7
27	The Effect of Practice Schedule on Context-Dependent Learning. Journal of Motor Behavior, 2019, 51, 121-128.	0.9	6
28	Neural correlates of dualâ€ŧask practice benefit on motor learning: a repetitive transcranial magnetic stimulation study. European Journal of Neuroscience, 2013, 37, 1823-1829.	2.6	5
29	Beyond Limits: Unmasking Potential Through Movement Discovery. Physical Therapy, 2020, 100, 747-756.	2.4	5
30	Use of low-frequency repetitive transcranial magnetic stimulation to reduce context-dependent learning in people with Parkinson's disease. European Journal of Physical and Rehabilitation Medicine, 2018, 54, 560-567.	2.2	2
31	Rethinking Parkinson Disease: Exploring Gut-Brain Interactions and the Potential Role of Exercise. Physical Therapy, 2022, 102, .	2.4	2
32	Correlates and Analysis of Motor Function in Humans and Animal Models of Parkinson's Disease. Neuromethods, 2011, , 55-90.	0.3	1
33	Using the MPTP Mouse Model to Understand Neuroplasticity: A New Therapeutic Target for Parkinson's Disease?. Neuromethods, 2011, , 353-369.	0.3	0
34	Promoting Physical Activity in a Spanish-Speaking Latina Population of Low Socioeconomic Status With Chronic Neurological Disorders: Proof-of-Concept Study. JMIR Formative Research, 2022, 6, e34312.	1.4	0