
Jhonatan L Luiz Fiorio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1166012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isotope-selective pore opening in a flexible metal-organic framework. Science Advances, 2022, 8, eabn7035.	10.3	28
2	Nanoengineering of Catalysts for Enhanced Hydrogen Production. Hydrogen, 2022, 3, 218-254.	3.4	11
3	Clean protocol for deoxygenation of epoxides to alkenes <i>via</i> catalytic hydrogenation using gold. Catalysis Science and Technology, 2021, 11, 312-318.	4.1	8
4	Rhenium – A Tuneable Player in Tailored Hydrogenation Catalysis. European Journal of Inorganic Chemistry, 2021, 2021, 4043-4065.	2.0	24
5	Piperazine-promoted gold-catalyzed hydrogenation: the influence of capping ligands. Catalysis Science and Technology, 2020, 10, 1996-2003.	4.1	12
6	Gold-amine cooperative catalysis for reductions and reductive aminations using formic acid as hydrogen source. Applied Catalysis B: Environmental, 2020, 267, 118728.	20.2	17
7	Reusable Heterogeneous Tungstophosphoric Acid-Derived Catalyst for Green Esterification of Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 15874-15883.	6.7	23
8	The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Transactions, 2018, 47, 5889-5915.	3.3	205
9	Reaction Pathway Dependence in Plasmonic Catalysis: Hydrogenation as a Model Molecular Transformation. Chemistry - A European Journal, 2018, 24, 12330-12339.	3.3	33
10	Accessing Frustrated Lewis Pair Chemistry through Robust Gold@N-Doped Carbon for Selective Hydrogenation of Alkynes. ACS Catalysis, 2018, 8, 3516-3524.	11.2	88
11	Synergic Effect of Copper and Palladium for Selective Hydrogenation of Alkynes. Industrial & Engineering Chemistry Research, 2018, 57, 16209-16216.	3.7	27
12	Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts. Nano Letters, 2018, 18, 7289-7297.	9.1	92
13	Gold–Ligand-Catalyzed Selective Hydrogenation of Alkynes into <i>cis</i> -Alkenes via H ₂ Heterolytic Activation by Frustrated Lewis Pairs. ACS Catalysis, 2017, 7, 2973-2980.	11.2	108
14	Tuning the Catalytic Activity and Selectivity of Pd Nanoparticles Using Ligand-Modified Supports and Surfaces. ACS Omega, 2017, 2, 6014-6022.	3.5	43
15	Investigation on chemical composition and optimization of essential oil obtainment from waste Pinus taeda L. using hydrodistillation. Brazilian Archives of Biology and Technology, 2016, 59, .	0.5	4
16	Syrup production via enzymatic conversion of a byproduct (broken rice) from rice industry. Acta Scientiarum - Technology, 2016, 38, 13.	0.4	7
17	Fermentation Kinetics of Rice Syrup, with High Content of Dextrose Equivalent, bySaccharomyces cerevisiaeand Characterization of Volatile Compounds from Wine. Journal of Food Processing and Preservation, 2016, 40, 1199-1205.	2.0	5
18	Vinegar rice (Oryza sativa L.) produced by a submerged fermentation process from alcoholic fermented rice. Food Science and Technology, 2015, 35, 196-201.	1.7	27