Magnus Langseth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11659912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluid-structure interaction effects during the dynamic response of clamped thin steel plates exposed to blast loading. International Journal of Mechanical Sciences, 2021, 195, 106263.	3.6	33
2	Finite element analysis of porous polymer coated pipelines subjected to impact. International Journal of Impact Engineering, 2021, 152, 103825.	2.4	3
3	On the effect of pilot holes on the mechanical behaviour of flow-drill screw joints. Experimental tests and mesoscale numerical simulations. Journal of Materials Processing Technology, 2021, 294, 117133.	3.1	13
4	A novel tests set-up for validation of connector models subjected to static and impact loadings. International Journal of Impact Engineering, 2021, 158, 103978.	2.4	2
5	Sandwich Panels with Polymeric Foam Cores Exposed to Blast Loading: An Experimental and Numerical Investigation. Applied Sciences (Switzerland), 2020, 10, 9061.	1.3	11
6	A through-thickness damage regularisation scheme for shell elements subjected to severe bending and membrane deformations. Journal of the Mechanics and Physics of Solids, 2019, 123, 190-206.	2.3	27
7	Testing and modelling of flow-drill screw connections under quasi-static loadings. Journal of Materials Processing Technology, 2018, 255, 724-738.	3.1	27
8	Static and dynamic testing and modelling of aluminium joints with flow-drill screw connections. International Journal of Impact Engineering, 2018, 115, 58-75.	2.4	27
9	A Shock Tube Used to Study the Dynamic Response of Blast-Loaded Plates. Proceedings (mdpi), 2018, 2, .	0.2	0
10	Quasi-static and dynamic indentation of offshore pipelines with and without multi-layer polymeric coating. Marine Structures, 2018, 62, 60-76.	1.6	21
11	Combined three-point bending and axial tension of pressurised and unpressurised X65 offshore steel pipes – Experiments and simulations. Marine Structures, 2018, 61, 560-577.	1.6	11
12	Transverse Deformation of Pressurised Pipes With Different Axial Loads. , 2017, , .		0
13	Quasi-Static and Dynamic Deformation of Polymer Coated Pipes. , 2017, , .		0
14	How placement of nut determines failure mode of bolt-and-nut assemblies. Steel Construction, 2017, 10, 241-247.	0.4	3
15	Macroscopic modelling of flow-drill screw connections in thin-walled aluminium structures. Thin-Walled Structures, 2016, 105, 185-206.	2.7	27
16	Macroscopic Modelling of Flow-Drill Screw Connections. Key Engineering Materials, 2016, 710, 143-148.	0.4	4
17	A shock tube facility to generate blast loading on structures. International Journal of Protective Structures, 2016, 7, 340-366.	1.4	60
18	Behaviour of plated structures subjected to blast loading. EPJ Web of Conferences, 2015, 94, 01015.	0.1	2

Magnus Langseth

#	ARTICLE	IF	CITATIONS
19	Macroscopic strength and failure properties of flow-drill screw connections. Journal of Materials Processing Technology, 2015, 222, 1-12.	3.1	50
20	Impact against empty and water-filled X65 steel pipes – Experiments and simulations. International Journal of Impact Engineering, 2014, 71, 73-88.	2.4	30
21	Impact against X65 steel pipes – An experimental investigation. International Journal of Solids and Structures, 2013, 50, 3430-3445.	1.3	29
22	The behaviour of an offshore steel pipeline material subjected to bending and stretching. Ships and Offshore Structures, 2012, 7, 371-387.	0.9	22
23	Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates. International Journal of Impact Engineering, 2011, 38, 577-589.	2.4	109
24	On the main mechanisms in ballistic perforation of steel plates at sub-ordnance impact velocities. , 2009, , 189-219.		2
25	Experimental and numerical study on the perforation of AA6005-T6 panels. International Journal of Impact Engineering, 2005, 32, 35-64.	2.4	87
26	Design of I Beams and Deck Profiles under Concentrated Loading. Journal of Structural Engineering, 2004, 130, 411-422.	1.7	3
27	Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles—experimental study. International Journal of Impact Engineering, 2004, 30, 367-384.	2.4	143
28	Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. International Journal of Impact Engineering, 2003, 28, 413-464.	2.4	190
29	Observations on shear plug formation in Weldox 460 E steel plates impacted by blunt-nosed projectiles. International Journal of Impact Engineering, 2001, 25, 553-572.	2.4	62
30	Sensitivity of model parameters in stretch bending of aluminium extrusions. International Journal of Mechanical Sciences, 2001, 43, 427-453.	3.6	56
31	Stretch bending of aluminium extrusions for car bumpers. Journal of Materials Processing Technology, 2000, 102, 241-248.	3.1	38
32	Design of experiments to identify material properties. Materials & Design, 2000, 21, 477-492.	5.1	24
33	Stretch Bending of Aluminum Extrusions: Effect of Geometry and Alloy. Journal of Engineering Mechanics - ASCE, 1999, 125, 392-400.	1.6	22
34	Stretch Bending of Aluminum Extrusions: Effect of Tensile Sequence. Journal of Engineering Mechanics - ASCE, 1999, 125, 521-529.	1.6	18
35	Ultimate strength of aluminium alloy outstands in compression: experiments and simplified analysis. Thin-Walled Structures, 1999, 34, 279-294.	2.7	52