Massimo Del Prete

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11659893/publications.pdf

Version: 2024-02-01

933447 1281871 18 479 10 11 citations h-index g-index papers 18 18 18 588 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Geneticâ€based design of a tetraâ€band highâ€efficiency radioâ€frequency energy harvesting system. IET Microwaves, Antennas and Propagation, 2013, 7, 1254-1263.	1.4	97
2	Time-Modulation of Linear Arrays for Real-Time Reconfigurable Wireless Power Transmission. IEEE Transactions on Microwave Theory and Techniques, 2016, , 1-12.	4.6	71
3	Remotely Identify and Detect by a Compact Reader With Mono-Pulse Scanning Capabilities. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 641-650.	4.6	45
4	Scavenging for Energy: A Rectenna Design for Wireless Energy Harvesting in UHF Mobile Telephony Bands. IEEE Microwave Magazine, 2017, 18, 91-99.	0.8	41
5	Energy Autonomous UWB Localization. IEEE Journal of Radio Frequency Identification, 2017, 1, 228-244.	2.3	30
6	A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications. Sensors, 2017, 17, 1732.	3.8	29
7	Co-Design Strategies for Energy-Efficient UWB and UHF Wireless Systems. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 1852-1863.	4.6	23
8	Optimum Excitations for a Dual-Band Microwatt Wake-Up Radio. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 4731-4739.	4.6	22
9	High-Accuracy Localization of Passive Tags With Multisine Excitations. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 5894-5908.	4.6	21
10	A 2.45-GHz Energy-Autonomous Wireless Power Relay Node. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 4511-4520.	4.6	20
11	Quasi-isotropic RF energy harvester for autonomous long distance IoT operations. , 2017, , .		18
12	Exploitation of a dual-band cell phone antenna for near-field WPT., 2015,,.		14
13	Energy-autonomous Bi-directional Wireless Power Transmission (WPT) and energy harvesting circuit. , 2015, , .		14
14	A 2.4 GHz-868 MHz dual-band wake-up radio for wireless sensor network and IoT., 2015,,.		12
15	A dual-band wake-up radio for ultra-low power Wireless Sensor Networks. , 2016, , .		9
16	Seamless exploitation of cellâ€phone antennas for nearâ€field WPT by a frequencyâ€diplexing approach. IET Microwaves, Antennas and Propagation, 2017, 11, 649-656.	1.4	8
17	Exploitation of Multi-sine Intermodulation for Passive Backscattering UWB Localization. , 2018, , .		3
18	Experimental analysis of power optimized waveforms for enhancing wake-up radio sensitivity., 2016,,.		2