Daniel Offen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11659615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 2001, 40, 959-975.	2.0	700
2	The role of oxidative stress in the pathogenesis of multiple sclerosis: The need for effective antioxidant therapy. Journal of Neurology, 2004, 251, 261-268.	1.8	546
3	Antioxidant Therapy in Acute Central Nervous System Injury: Current State. Pharmacological Reviews, 2002, 54, 271-284.	7.1	483
4	The "Dying-Back―Phenomenon of Motor Neurons in ALS. Journal of Molecular Neuroscience, 2011, 43, 470-477.	1.1	315
5	<i>In Vivo</i> Neuroimaging of Exosomes Using Gold Nanoparticles. ACS Nano, 2017, 11, 10883-10893.	7.3	290
6	Golden Exosomes Selectively Target Brain Pathologies in Neurodegenerative and Neurodevelopmental Disorders. Nano Letters, 2019, 19, 3422-3431.	4.5	252
7	Safety and Clinical Effects of Mesenchymal Stem Cells Secreting Neurotrophic Factor Transplantation in Patients With Amyotrophic Lateral Sclerosis. JAMA Neurology, 2016, 73, 337.	4.5	251
8	Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury. ACS Nano, 2019, 13, 10015-10028.	7.3	246
9	Prevention of Dopamine-Induced Cell Death by Thiol Antioxidants: Possible Implications for Treatment of Parkinson's Disease. Experimental Neurology, 1996, 141, 32-39.	2.0	230
10	Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons — A possible novel pathogenetic mechanism in Parkinson's disease. Neuroscience Letters, 1994, 170, 136-140.	1.0	226
11	Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells, 2017, 35, 1867-1880.	1.4	176
12	Human Mesenchymal Stem Cells Express Neural Genes, Suggesting a Neural Predisposition. Stem Cells and Development, 2006, 15, 141-164.	1.1	156
13	Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson's disease1This manuscript is based on a poster presented at the Brain Research Interactive Symposium on "Neuropeptides at the Millenniumâ€, Miami, October 1999.1. Brain Research 2000 854 257-262	1.1	147
14	Apoptosis and Parkinson's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 245-250.	2.5	147
15	Protective Effects of Neurotrophic Factor–Secreting Cells in a 6-OHDA Rat Model of Parkinson Disease. Stem Cells and Development, 2009, 18, 1179-1190.	1.1	136
16	Enhanced Oxidative Stress and Altered Antioxidants in Brains of <i>Bcl</i> â€2â€Deficient Mice. Journal of Neurochemistry, 1998, 71, 741-748.	2.1	125
17	Oxidative insults induce DJ-1 upregulation and redistribution: Implications for neuroprotection. NeuroToxicology, 2008, 29, 397-405.	1.4	120
18	Intravitreal Injections of Neurotrophic Factors Secreting Mesenchymal Stem Cells Are		120

Neuroprotective in Rat Eyes following Optic Nerve Transection. , 2010, 51, 6394.

#	Article	IF	CITATIONS
19	Protective effect of insulin-like-growth-factor-1 against dopamine-induced neurotoxicity in human and rodent neuronal cultures: possible implications for Parkinson's disease. Neuroscience Letters, 2001, 316, 129-132.	1.0	117
20	A low molecular weight copper chelator crosses the blood-brain barrier and attenuates experimental autoimmune encephalomyelitis. Journal of Neurochemistry, 2004, 89, 1241-1251.	2.1	113
21	Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice. Molecular Autism, 2018, 9, 57.	2.6	113
22	Dopamine-induced programmed cell death in mouse thymocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1268, 171-177.	1.9	109
23	Glutaredoxin Protects Cerebellar Granule Neurons from Dopamine-induced Apoptosis by Activating NF-κB via Ref-1. Journal of Biological Chemistry, 2001, 276, 1335-1344.	1.6	106
24	Antioxidant Treatment in Alzheimer's Disease: Current State. Journal of Molecular Neuroscience, 2003, 21, 1-12.	1.1	105
25	Bone-marrow-derived mesenchymal stem cell therapy for neurodegenerative diseases. Expert Opinion on Biological Therapy, 2009, 9, 1487-1497.	1.4	103
26	Mutant and Wild-Type α-Synuclein Interact with Mitochondrial Cytochrome C Oxidase. Journal of Molecular Neuroscience, 2002, 18, 229-238.	1.1	99
27	Levodopa induces apoptosis in cultured neuronal cells—A possible accelerator of nigrostriatal degeneration in Parkinson's disease?. Movement Disorders, 1997, 12, 17-23.	2.2	90
28	Induction of Human Mesenchymal Stem Cells into Dopamine-Producing Cells with Different Different Differentiation Protocols. Stem Cells and Development, 2008, 17, 547-554.	1.1	90
29	Activation of nuclear transcription factor kappa B (NF-κB) is essential for dopamine-induced apoptosis in PC12 cells. Journal of Neurochemistry, 2001, 77, 391-398.	2.1	86
30	DJ-1 protects against dopamine toxicity. Journal of Neural Transmission, 2009, 116, 151-160.	1.4	85
31	Spinal Cord mRNA Profile in Patients with ALS: Comparison with Transgenic Mice Expressing the Human SOD-1 Mutant. Journal of Molecular Neuroscience, 2009, 38, 85-93.	1.1	83
32	Mesenchymal Stem Cells Stimulate Endogenous Neurogenesis in the Subventricular Zone of Adult Mice. Stem Cell Reviews and Reports, 2011, 7, 404-412.	5.6	75
33	Mesenchymal Stem Cell Transplantation Promotes Neurogenesis and Ameliorates Autism Related Behaviors in BTBR Mice. Autism Research, 2016, 9, 17-32.	2.1	74
34	Levodopa Toxicity and Apoptosis. Annals of Neurology, 1998, 44, S149-54.	2.8	70
35	Glutaredoxin Protects Cerebellar Granule Neurons from Dopamine-induced Apoptosis by Dual Activation of the Ras-Phosphoinositide 3-Kinase and Jun N-terminal Kinase Pathways. Journal of Biological Chemistry, 2001, 276, 21618-21626.	1.6	68
36	Transplantation of Placenta-Derived Mesenchymal Stem Cells in the EAE Mouse Model of MS. Journal of Molecular Neuroscience, 2012, 48, 176-184.	1.1	68

#	Article	IF	CITATIONS
37	Monoamine-induced apoptotic neuronal cell death. Cellular and Molecular Neurobiology, 1997, 17, 101-118.	1.7	63
38	A novel thiol antioxidant that crosses the blood brain barrier protects dopaminergic neurons in experimental models of Parkinson's disease. European Journal of Neuroscience, 2005, 21, 637-646.	1.2	59
39	Lentiviral Delivery of <i>LMX1a</i> Enhances Dopaminergic Phenotype in Differentiated Human Bone Marrow Mesenchymal Stem Cells. Stem Cells and Development, 2009, 18, 591-602.	1.1	59
40	Intracerebroventricular Transplantation of Human Mesenchymal Stem Cells Induced to Secrete Neurotrophic Factors Attenuates Clinical Symptoms in a Mouse Model of Multiple Sclerosis. Journal of Molecular Neuroscience, 2010, 41, 129-137.	1.1	59
41	Differentiated Mesenchymal Stem Cells for Sciatic Nerve Injury. Stem Cell Reviews and Reports, 2011, 7, 664-671.	5.6	56
42	Knocking Out DJ-1 Attenuates Astrocytes Neuroprotection Against 6-Hydroxydopamine Toxicity. Journal of Molecular Neuroscience, 2013, 50, 542-550.	1.1	55
43	Oxidative Stress, Induced by 6-Hydroxydopamine, Reduces Proteasome Activities in PC12 Cells: Implications for the Pathogenesis of Parkinson's Disease. Journal of Molecular Neuroscience, 2004, 24, 387-400.	1.1	52
44	Induction of Neuron-Specific Enolase Promoter and Neuronal Markers in Differentiated Mouse Bone Marrow Stromal Cells. Journal of Molecular Neuroscience, 2003, 21, 121-132.	1.1	47
45	The involvement of p53 in dopamine-induced apoptosis of cerebellar granule neurons and leukemic cells overexpressing p53. Cellular and Molecular Neurobiology, 1999, 19, 261-276.	1.7	46
46	Anti-Inflammatory Drugs in the Treatment of Neurodegenerative Diseases: Current State. Current Pharmaceutical Design, 2006, 12, 3509-3519.	0.9	45
47	DJ-1 Protects Against Dopamine Toxicity: Implications for Parkinson's Disease and Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 215-225.	1.7	44
48	Promising Opportunities for Treating Neurodegenerative Diseases with Mesenchymal Stem Cell-Derived Exosomes. Biomolecules, 2020, 10, 1320.	1.8	43
49	Long term beneficial effect of neurotrophic factors-secreting mesenchymal stem cells transplantation in the BTBR mouse model of autism. Behavioural Brain Research, 2017, 331, 254-260.	1.2	41
50	DJ-1 Changes in G93A-SOD1 Transgenic Mice: Implications for Oxidative Stress in ALS. Journal of Molecular Neuroscience, 2009, 38, 94-102.	1.1	40
51	Safety of repeated transplantations of neurotrophic factorsâ€secreting human mesenchymal stromal stromal stem cells. Clinical and Translational Medicine, 2014, 3, 21.	1.7	40
52	A DJ-1 Based Peptide Attenuates Dopaminergic Degeneration in Mice Models of Parkinson's Disease via Enhancing Nrf2. PLoS ONE, 2015, 10, e0127549.	1.1	39
53	Intranasal Delivery of Mesenchymal Stem Cells-Derived Extracellular Vesicles for the Treatment of Neurological Diseases. Stem Cells, 2021, 39, 1589-1600.	1.4	39
54	Toll-Like Receptor-4 Inhibitor TAK-242 Attenuates Motor Dysfunction and Spinal Cord Pathology in an Amyotrophic Lateral Sclerosis Mouse Model. International Journal of Molecular Sciences, 2017, 18, 1666.	1.8	37

#	Article	IF	CITATIONS
55	Mesenchymal stem cells derived extracellular vesicles improve behavioral and biochemical deficits in a phencyclidine model of schizophrenia. Translational Psychiatry, 2020, 10, 305.	2.4	32
56	Dopamine-melanin is actively phagocytized by PC12 cells and cerebellar granular cells: possible implications for the etiology of Parkinson's disease. Neuroscience Letters, 1999, 260, 101-104.	1.0	31
57	The CB1Cannabinoid Receptor Agonist, HU-210, Reduces Levodopa-Induced Rotations in 6-Hydroxydopamine-Lesioned Rats. Basic and Clinical Pharmacology and Toxicology, 2003, 93, 66-70.	0.0	31
58	Mice Overexpressing Bcl-2 in Their Neurons Are Resistant to Myelin Oligodendrocyte Glycoprotein (MOG)-Induced Experimental Autoimmune Encephalomyelitis (EAE). Journal of Molecular Neuroscience, 2001, 15, 167-176.	1.1	30
59	DJ-1 Knockout Augments Disease Severity and Shortens Survival in a Mouse Model of ALS. PLoS ONE, 2015, 10, e0117190.	1.1	30
60	Experimental Encephalomyelitis Induces Changes in DJ-1: Implications for Oxidative Stress in Multiple Sclerosis. Antioxidants and Redox Signaling, 2006, 8, 1987-1995.	2.5	28
61	Analysis of Gene Expression in MOG-Induced Experimental Autoimmune Encephalomyelitis After Treatment <small>W</small> ith a Novel Brain-Penetrating Antioxidant. Journal of Molecular Neuroscience, 2005, 27, 125-136.	1.1	21
62	A Novel Brain-Targeted Antioxidant (AD4) Attenuates Haloperidol-Induced Abnormal Movement in Rats:. Clinical Neuropharmacology, 2005, 28, 285-288.	0.2	17
63	Neuroprotective Effect of a DJ-1 Based Peptide in a Toxin Induced Mouse Model of Multiple System Atrophy. PLoS ONE, 2016, 11, e0148170.	1.1	16
64	Rare combination of myasthenia and motor neuronopathy, responsive to Mscâ€Ntf stem cell therapy. Muscle and Nerve, 2014, 49, 455-457.	1.0	14
65	Behavioral aspects and neurobiological properties underlying medical cannabis treatment in Shank3 mouse model of autism spectrum disorder. Translational Psychiatry, 2021, 11, 524.	2.4	9
66	Labeling and tracking exosomes within the brain using gold nanoparticles. , 2018, , .		5
67	Extracellular Vesicles Tracking and Quantification Using CT and Optical Imaging in Rats. Bio-protocol, 2020, 10, e3635.	0.2	5
68	Reply to "Comment on â€~In Vivo Neuroimaging of Exosomes Using Gold Nanoparticles'― ACS Nano, 2 12, 11719-11720.	018 _{.3}	3
69	Molecular Biology of Dopamine-Induced Apoptosis: Possible Implications for Parkinson's Disease. , 2001, 62, 73-87.		2
70	The Role of Oxidative Stress in the Pathogenesis of Multiple Sclerosis: Current State. , 2007, , 283-295.		1