Naoya Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1165805/publications.pdf

Version: 2024-02-01

22 338 9
papers citations h-ind

9 18
h-index g-index

24 24 all docs docs citations

24 times ranked 513 citing authors

#	Article	IF	CITATIONS
1	Selective reflection enhancement by controlling of surface-layering structure of inorganic nanoparticles on polymer microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128188.	4.7	2
2	Chemical redox-induced chiroptical switching of supramolecular assemblies of viologens. RSC Advances, 2022, 12, 2019-2025.	3.6	3
3	Helically Aligned Fused Carbon Hollow Nanospheres with Chiral Discrimination Ability. Nanoscale, 2022, , .	5.6	1
4	Co-assembling system that exhibits bright circularly polarized luminescence. Materials Advances, 2022, 3, 3123-3127.	5.4	3
5	Lanthanide ion-doped silica nanohelix: a helical inorganic network acts as a chiral source for metal ions. Chemical Communications, 2021, 57, 4392-4395.	4.1	6
6	Chiral optical scattering from helical and twisted silica nanoribbons. Chemical Communications, 2021, 57, 12024-12027.	4.1	3
7	Extreme enhancement of secondary chirality through coordination-driven steric changes of terpyridyl ligand in glutamide-based molecular gels. RSC Advances, 2020, 10, 29627-29632.	3.6	3
8	Chirality induction on non-chiral dye-linked polysilsesquioxane in nanohelical structures. Chemical Communications, 2020, 56, 7241-7244.	4.1	12
9	Multi-chiro-informative System Created by a Porphyrin-functionalized Chiral Molecular Assembly. Chemistry Letters, 2020, 49, 368-371.	1.3	8
10	Induced circular dichroism of monoatomic anions: silica-assisted the transfer of chiral environment from molecular assembled nanohelices to halide ions. Chemical Communications, 2018, 54, 10244-10247.	4.1	20
11	One-pot green process for surface layering with nanodiamonds on polymer microspheres. Journal of Supercritical Fluids, 2017, 127, 217-222.	3.2	8
12	Fluorescence emission originated from the H-aggregated cyanine dye with chiral gemini surfactant assemblies having a narrow absorption band and a remarkably large Stokes shift. Chemical Communications, 2017, 53, 8870-8873.	4.1	53
13	PEDOT-Sulfate Nanocrystalline Cellulose Composites and Their Characterization. Kobunshi Ronbunshu, 2017, 74, 565-571.	0.2	O
14	Cellulose/boron nitride core–shell microbeads providing high thermal conductivity for thermally conductive composite sheets. RSC Advances, 2016, 6, 33036-33042.	3.6	38
15	Direct Observation of Siloxane Chirality on Twisted and Helical Nanometric Amorphous Silica. Nano Letters, 2016, 16, 6411-6415.	9.1	49
16	Memorized chiral arrangement of gemini surfactant assemblies in nanometric hybrid organic–silica helices. Chemical Communications, 2016, 52, 5800-5803.	4.1	21
17	Enhanced Fluorescence of Loosely Packed Dye Aggregates. Chemistry Letters, 2015, 44, 211-213.	1.3	10
18	Chemical mechanical polishing of transparent conductive layers using spherical cationic polymer microbeads. Thin Solid Films, 2015, 576, 31-37.	1.8	3

#	Article	lF	CITATION
19	The development of a highly conductive PEDOT system by doping with partially crystalline sulfated cellulose and its electric conductivity. Journal of Materials Chemistry C, 2015, 3, 8881-8887.	5.5	52
20	Functionalization of methyl orange using cationic peptide amphiphile: colorimetric discrimination between ATP and ADP at pH 2.0. Organic and Biomolecular Chemistry, 2011, 9, 2000.	2.8	10
21	Formation of specific dipolar microenvironments complementary to dipolar betaine dye by nonionic peptide lipids in nonpolar medium. Organic and Biomolecular Chemistry, 2009, 7, 2338.	2.8	10
22	Molecular structural requirements, dye specificity, and application of anionic peptide amphiphiles that induce intense fluorescence in cationic dyes. Organic and Biomolecular Chemistry, 2009, 7, 2327.	2.8	21