List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11657051/publications.pdf Version: 2024-02-01

CARY M KINC

#	Article	IF	CITATIONS
1	Short-Term Exposure to Thermophilic Temperatures Facilitates CO Uptake by Thermophiles Maintained under Predominantly Mesophilic Conditions. Microorganisms, 2022, 10, 656.	3.6	2
2	Putative Nickel-Dependent Anaerobic Carbon Monoxide Uptake Occurs Commonly in Soils and Sediments at Ambient Temperature and Might Contribute to Atmospheric and Sub-Atmospheric Carbon Monoxide Uptake During Anoxic Conditions. Frontiers in Microbiology, 2022, 13, 736189.	3.5	2
3	Anaerobic Carbon Monoxide Uptake by Microbial Communities in Volcanic Deposits at Different Stages of Successional Development on O-yama Volcano, Miyake-jima, Japan. Microorganisms, 2021, 9, 12.	3.6	6
4	Reconstructing Genomes of Carbon Monoxide Oxidisers in Volcanic Deposits Including Members of the Class Ktedonobacteria. Microorganisms, 2020, 8, 1880.	3.6	15
5	Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME Journal, 2019, 13, 2868-2881.	9.8	133
6	Impacts of Experimental Flooding on Microbial Communities and Methane Fluxes in an Urban Meadow, Baton Rouge, Louisiana. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	5
7	Microbiomes of the Enteropneust, Saccoglossus bromophenolosus, and Associated Marine Intertidal Sediments of Cod Cove, Maine. Frontiers in Microbiology, 2018, 9, 3066.	3.5	6
8	Volcanic Soils as Sources of Novel CO-Oxidizing Paraburkholderia and Burkholderia: Paraburkholderia hiiakae sp. nov., Paraburkholderia metrosideri sp. nov., Paraburkholderia paradisi sp. nov., Paraburkholderia peleae sp. nov., and Burkholderia alpina sp. nov. a Member of the Burkholderia cepacia Complex. Frontiers in Microbiology, 2017, 8, 207.	3.5	78
9	Perchlorate-Coupled Carbon Monoxide (CO) Oxidation: Evidence for a Plausible Microbe-Mediated Reaction in Martian Brines. Frontiers in Microbiology, 2017, 8, 2571.	3.5	18
10	Rubrobacter spartanus sp. nov., a moderately thermophilic oligotrophic bacterium isolated from volcanic soil. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 3597-3602.	1.7	20
11	Urban Microbiomes and Urban Agriculture: What Are the Connections and Why Should We Care?. , 2016, , 191-205.		1
12	Carbon monoxide as a metabolic energy source for extremely halophilic microbes: Implications for microbial activity in Mars regolith. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4465-4470.	7.1	65
13	Urban microbiomes and urban ecology: How do microbes in the built environment affect human sustainability in cities?. Journal of Microbiology, 2014, 52, 721-728.	2.8	41
14	Temperature responses of carbon monoxide and hydrogen uptake by vegetated and unvegetated volcanic cinders. ISME Journal, 2012, 6, 1558-1565.	9.8	8
15	The phylogenetic distribution and ecological role of carbon monoxide oxidation in the genus Burkholderia. FEMS Microbiology Ecology, 2012, 79, 167-175.	2.7	36
16	Analysis of Stomach and Gut Microbiomes of the Eastern Oyster (Crassostrea virginica) from Coastal Louisiana, USA. PLoS ONE, 2012, 7, e51475.	2.5	242
17	Interactions between bacterial carbon monoxide and hydrogen consumption and plant development on recent volcanic deposits. ISME Journal, 2008, 2, 195-203.	9.8	36
18	Atmospheric CO and Hydrogen Uptake and CO Oxidizer Phylogeny for Miyake-jima, Japan Volcanic Deposits. Microbes and Environments, 2008, 23, 299-305.	1.6	35

#	Article	IF	CITATIONS
19	Distribution of Atmospheric Methane Oxidation and Methanotrophic Communities on Hawaiian Volcanic Deposits and Soils. Microbes and Environments, 2008, 23, 326-330.	1.6	22
20	Physiological, Ecological, and Phylogenetic Characterization of Stappia , a Marine CO-Oxidizing Bacterial Genus. Applied and Environmental Microbiology, 2007, 73, 1266-1276.	3.1	75
21	Chemolithotrohic Bacteria: Distributions, Functions and Significance in Volcanic Environments. Microbes and Environments, 2007, 22, 309-319.	1.6	30
22	Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nature Reviews Microbiology, 2007, 5, 107-118.	28.6	368
23	Microbial carbon monoxide consumption in salt marsh sediments. FEMS Microbiology Ecology, 2007, 59, 2-9.	2.7	22
24	Disparate distributions of chemolithotrophs containing form IA or IC large subunit genes for ribulose-1,5-bisphosphate carboxylase/oxygenase in intertidal marine and littoral lake sediments. FEMS Microbiology Ecology, 2007, 60, 113-125.	2.7	17
25	Stability of trifluoromethane in forest soils and methanotrophic cultures. FEMS Microbiology Ecology, 2006, 22, 103-109.	2.7	6
26	Response of methanotrophic activity in forest soil to methane availability. FEMS Microbiology Ecology, 2006, 23, 333-340.	2.7	3
27	Thermalkalibacillus uzonensis gen. nov. sp. nov, a novel aerobic alkali-tolerant thermophilic bacterium isolated from a hot spring in Uzon Caldera, Kamchatka. Extremophiles, 2006, 10, 337-345.	2.3	12
28	Molecular Analysis of Carbon Monoxide-Oxidizing Bacteria Associated with Recent Hawaiian Volcanic Deposits. Applied and Environmental Microbiology, 2004, 70, 4242-4248.	3.1	62
29	Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature, 2004, 432, 910-913.	27.8	415
30	Molecular andCulture-Based Analyses of Aerobic Carbon Monoxide OxidizerDiversityâ€. Applied and Environmental Microbiology, 2003, 69, 7257-7265.	3.1	145
31	Uptake ofCarbon Monoxide and Hydrogen at Environmentally Relevant Concentrationsby Mycobacteriaâ€. Applied and Environmental Microbiology, 2003, 69, 7266-7272.	3.1	87
32	Soil-Atmosphere CO Exchanges and Microbial Biogeochemistry of CO Transformations in a Brazilian Agricultural Ecosystem. Applied and Environmental Microbiology, 2002, 68, 4480-4485.	3.1	20
33	Impacts of plant roots on soil CO cycling and soil-atmosphere CO exchange. Global Change Biology, 2002, 8, 1085-1093.	9.5	36
34	Radiotracer assays (35S) of sulfate reduction rates in marine and freshwater sediments. Methods in Microbiology, 2001, 30, 489-500.	0.8	10
35	The effect of soil acidification on atmospheric methane uptake by a Maine forest soil1. FEMS Microbiology Ecology, 2001, 34, 207-212.	2.7	35
36	Enrichment of High-Affinity CO Oxidizers in Maine Forest Soil. Applied and Environmental Microbiology, 2001, 67, 3671-3676.	3.1	39

#	Article	IF	CITATIONS
37	Response of Atmospheric Methane Consumption by Maine Forest Soils to Exogenous Aluminum Salts. Applied and Environmental Microbiology, 2000, 66, 3674-3679.	3.1	31
38	Land use impacts on atmospheric carbon monoxide consumption by soils. Global Biogeochemical Cycles, 2000, 14, 1161-1172.	4.9	43
39	Characteristics and significance of atmospheric carbon monoxide consumption by soils. Chemosphere, 1999, 1, 53-63.	1.2	45
40	Controls of methane oxidation in sediments. SIL Communications 1953-1996, 1996, 25, 25-38.	0.1	6
41	Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiology Ecology, 1996, 19, 105-115.	2.7	82
42	Physiological Limitations of Methanotrophic Activity in situ. , 1996, , 17-32.		5
43	Regulation of methane oxidation: contrasts between anoxic sediments and oxic soils. , 1996, , 318-325.		4
44	Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiology Ecology, 1996, 19, 105-115.	2.7	7
45	Stability of methane oxidation capacity to variations in methane and nutrient concentrations. FEMS Microbiology Ecology, 1995, 17, 285-294.	2.7	69
46	Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature, 1994, 370, 282-284.	27.8	202
47	Ammonium and Nitrite Inhibition of Methane Oxidation by <i>Methylobacter albus</i> BG8 and <i>Methylosinus trichosporium</i> OB3b at Low Methane Concentrations. Applied and Environmental Microbiology, 1994, 60, 3508-3513.	3.1	168
48	Mechanistic Analysis of Ammonium Inhibition of Atmospheric Methane Consumption in Forest Soils. Applied and Environmental Microbiology, 1994, 60, 3514-3521.	3.1	252
49	Survival and Recovery of Methanotrophic Bacteria Starved under Oxic and Anoxic Conditions. Applied and Environmental Microbiology, 1994, 60, 2602-2608.	3.1	123
50	Aspects of the Biogeochemistry of Methane in Mono Lake and the Mono Basin of California. , 1993, , 704-741.		33
51	Ecological Aspects of Methane Oxidation, a Key Determinant of Global Methane Dynamics. Advances in Microbial Ecology, 1992, , 431-468.	0.1	214
52	A comparison of phospholipid and chloroform fumigation analyses for biomass in soil: potentials and limitations. FEMS Microbiology Ecology, 1991, 8, 257-267.	2.7	7
53	A comparison of phospholipid and chloroform fumigation analyses for biomass in soil: potentials and limitations. FEMS Microbiology Letters, 1991, 85, 257-268.	1.8	25
54	Measurement of Acetate Concentrations in Marine Pore Waters by Using an Enzymatic Approach. Applied and Environmental Microbiology, 1991, 57, 3476-3481.	3.1	41

#	Article	IF	CITATIONS
55	Formation of methylmercaptan and dimethylsulfide from methoxylated aromatic compounds in anoxic marine and fresh water sediments. FEMS Microbiology Ecology, 1990, 7, 295-301.	2.7	6
56	Dynamics and controls of methane oxidation in a Danish wetland sediment*. FEMS Microbiology Ecology, 1990, 7, 309-323.	2.7	18
57	Effects of added manganic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments. FEMS Microbiology Letters, 1990, 73, 131-138.	1.8	59
58	Dynamics and controls of methane oxidation in a Danish wetland sediment*. FEMS Microbiology Letters, 1990, 74, 309-323.	1.8	30
59	Regulation by light of methane emissions from a wetland. Nature, 1990, 345, 513-515.	27.8	126
60	Effects of added manganic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments. FEMS Microbiology Letters, 1990, 73, 131-138.	1.8	2
61	Formation of methylmercaptan and dimethylsulfide from methoxylated aromatic compounds in anoxic marine and fresh water sediments. FEMS Microbiology Letters, 1990, 74, 295-301.	1.8	3
62	Distribution and Rate of Methane Oxidation in Sediments of the Florida Everglades. Applied and Environmental Microbiology, 1990, 56, 2902-2911.	3.1	181
63	Efficacy of Phospholipid Analysis in Determining Microbial Biomass in Sediments. Applied and Environmental Microbiology, 1989, 55, 2888-2893.	3.1	360
64	Methanogenesis from Methylated Amines in a Hypersaline Algal Mat. Applied and Environmental Microbiology, 1988, 54, 130-136.	3.1	76
65	An enzymatic synthesis of specifically radiolabelled derivatives of the common osmolyte, glycine betaine. Journal of Experimental Marine Biology and Ecology, 1987, 107, 145-154.	1.5	5
66	Characterization of β-Glucosidase Activity in Intertidal Marine Sediments. Applied and Environmental Microbiology, 1986, 51, 373-380.	3.1	135
67	Short-term endproducts of sulfate reduction in a salt marsh: Formation of acid volatile sulfides, elemental sulfur, and pyrite. Geochimica Et Cosmochimica Acta, 1985, 49, 1561-1566.	3.9	73
68	Utilization of hydrogen, acetate, and "noncompetitiveâ€ , substrates by methanogenic bacteria in marine sediments. Geomicrobiology Journal, 1984, 3, 275-306.	2.0	145
69	Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments1. Limnology and Oceanography, 1984, 29, 1037-1051.	3.1	155
70	Metabolism of Trimethylamine, Choline, and Glycine Betaine by Sulfate-Reducing and Methanogenic Bacteria in Marine Sediments. Applied and Environmental Microbiology, 1984, 48, 719-725.	3.1	163
71	Metabolism of Acetate, Methanol, and Methylated Amines in Intertidal Sediments of Lowes Cove, Maine. Applied and Environmental Microbiology, 1983, 45, 1848-1853.	3.1	189
72	Tracer Analysis of Methanogenesis in Salt Marsh Soils. Applied and Environmental Microbiology, 1980, 39, 877-881.	3.1	38

#	Article	IF	CITATIONS
73	Methane release from soils of a Georgia salt marsh. Geochimica Et Cosmochimica Acta, 1978, 42, 343-348.	3.9	123