List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1165662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two Heterometallic Nanoclusters [Dy ^{III} ₄ Ni ^{II} ₈] and [Dy ^{III} ₁₀ Mn ^{III} ₄ Mn ^{III} ₂]: Structure, Assembly Mechanism, and Magnetic Properties. Inorganic Chemistry, 2022, 61, 3655-3663.	4.0	5
2	Manipulation of Mixed Ligands to Form Single-Layer and Double-Layer Lanthanide Clusters and Their Magnetic Properties. Crystal Growth and Design, 2022, 22, 2132-2138.	3.0	2
3	Two tetranuclear Cu ₂ Ln ₂ (Ln = Dy, Tb) heterometallic complexes: Structure, solution behavior, and magnetic properties. Applied Organometallic Chemistry, 2022, 36, .	3.5	2
4	Series of the Largest Dish-Shaped Dysprosium Nanoclusters Formed by <i>In Situ</i> Reactions. Inorganic Chemistry, 2022, 61, 6094-6100.	4.0	13
5	Structural and magnetic studies of six-coordinated Schiff base Dy(<scp>iii</scp>) complexes. Inorganic Chemistry Frontiers, 2022, 9, 3059-3070.	6.0	12
6	The strong <i>in vitro</i> and <i>vivo</i> cytotoxicity of three new cobalt(<scp>ii</scp>) complexes with 8-methoxyquinoline. Dalton Transactions, 2022, 51, 8840-8847.	3.3	9
7	Giant Crown-Shaped Dy ₃₄ Nanocluster with High Acid–Base Stability Assembled by an out-to-in Growth Mechanism. Inorganic Chemistry, 2022, 61, 10101-10107.	4.0	13
8	A Double-Layered {Cu9} Nanocage with Diacylhydrazine: Synthesis, Structure and Magnetic Properties. Journal of Cluster Science, 2021, 32, 765-772.	3.3	1
9	Lanthanide nitrato complexes bridged by the bis-tridentate ligand 2,3,5,6-tetra(2-pyridyl)pyrazine: Syntheses, crystal structures, Hirshfeld surface analyses, luminescence properties, DFT calculations, and magnetic behavior. Journal of Luminescence, 2021, 232, 117835.	3.1	9
10	Binuclear Ln (III) complexes: Highâ€efficiency sensing of acetonitrile/dichloromethane and magnetocaloric effect. Applied Organometallic Chemistry, 2021, 35, e6130.	3.5	2
11	pH manipulates the assembly of a series of dysprosium clusters with subtle differences. Inorganic Chemistry Frontiers, 2021, 8, 3134-3140.	6.0	19
12	A series of dysprosium clusters assembled by a substitution effect-driven out-to-in growth mechanism. Inorganic Chemistry Frontiers, 2021, 8, 2136-2143.	6.0	33
13	Regulating the solution structural integrity and slow magnetic relaxation behavior of two Dy6 clusters with a pyridine–triazole ligand. New Journal of Chemistry, 2021, 45, 7096-7102.	2.8	0
14	Acid and alkali-resistant Dy ₄ coordination clusters: synthesis, structure and slow magnetic relaxation behaviors. Journal of Materials Chemistry C, 2021, 9, 3854-3862.	5.5	18
15	Synthesis and anticancer activity of mixed ligand 3d metal complexes. Metallomics, 2021, 13, .	2.4	1
16	Two Decanuclear Dy ^{III} _{<i>x</i>} Co ^{II} _{10–<i>x</i>} (<i>x</i> = 2, 4) Nanoclusters: Structure, Assembly Mechanism, and Magnetic Properties. Inorganic Chemistry, 2021, 60, 4904-4914.	4.0	14
17	Design, syntheses and antitumor activities evaluation of 1,5â€diaryl substituted pyrazole secnidazole ester derivatives. Journal of Heterocyclic Chemistry, 2021, 58, 1656-1664.	2.6	5
18	Exploring the functional relation of magnetic density and magnetocaloric effect based on a dinuclear system. Applied Organometallic Chemistry, 2021, 35, e6325.	3.5	3

#	Article	IF	CITATIONS
19	Anion and Solvent Manipulated Out-to-In Growth Mechanism to Assemble a Series of Different Dysprosium Clusters. Bulletin of the Chemical Society of Japan, 2021, 94, 2313-2318.	3.2	0
20	Superb Alkali-Resistant Dy ^{III} ₂ Ni ^{II} ₄ Single-Molecule Magnet. Inorganic Chemistry, 2021, 60, 14752-14758.	4.0	6
21	Guest-Induced Switching of a Molecule-Based Magnet in a 3d–4f Heterometallic Cluster-Based Chain Structure. Inorganic Chemistry, 2021, 60, 633-641.	4.0	6
22	Structure, assembly mechanism and magnetic properties of heterometallic dodecanuclear nanoclusters Dylll4Mll8 (M = Ni, Co). Inorganic Chemistry Frontiers, 2021, 8, 5214-5224.	6.0	10
23	Two Diamond-Shaped Dy ₄ Complexes Caused by Different Topological Connections: Structure and Magnetism. Crystal Growth and Design, 2021, 21, 6056-6063.	3.0	7
24	Antitumor Activities for Two Pt(II) Complexes of Tropolone and 8-Hydroxyquinoline Derivative. Inorganic Chemistry, 2021, 60, 16128-16139.	4.0	13
25	A Series of High-Nuclear Gadolinium Cluster Aggregates with a Magnetocaloric Effect Constructed through Two-Component Manipulation. Inorganic Chemistry, 2021, 60, 16794-16802.	4.0	19
26	Truncation reaction regulates the out-to-in growth mechanism to decrypt the formation of brucite-like dysprosium clusters. Dalton Transactions, 2021, 51, 197-202.	3.3	9
27	A novel sandwich shaped {Colll2Coll12MoV24} cluster with a Coll4 triangle encapsulated in two capped ColllColl4MoV12O40 fragments. Dalton Transactions, 2020, 49, 1375-1379.	3.3	2
28	Sandglass-Shaped LnIII9 Cluster Containing Two Quadrangular Pyramids (Ln5O5) Shared by Vertices: Structure, Magnetic and Photoresponsive Metal Ion Sensing. Journal of Cluster Science, 2020, 31, 1155-1161.	3.3	2
29	Manipulating clusters by regulating N,O chelating ligands: structures and multistep assembly mechanisms. CrystEngComm, 2020, 22, 915-923.	2.6	8
30	Ti ₄ (embonate) ₆ Based Cage-Cluster Construction in a Stable Metal–Organic Framework for Gas Sorption and Separation. Crystal Growth and Design, 2020, 20, 29-32.	3.0	19
31	Dy ^{III} single-molecule magnets from ligands incorporating both amine and acylhydrazine Schiff base groups: the centrosymmetric {Dy ₂ } displaying dual magnetic relaxation behaviors. Dalton Transactions, 2020, 49, 15739-15749.	3.3	15
32	Self-Assembly of a Ti ₄ (embonate) ₆ Cage toward Silver. Inorganic Chemistry, 2020, 59, 14861-14865.	4.0	14
33	Synthesis and antitumor activities of transition metal complexes of a bis-Schiff base of 2-hydroxy-1-naphthalenecarboxaldehyde. Journal of Inorganic Biochemistry, 2020, 210, 111173.	3.5	22
34	Rationally Designing Metal–Organic Frameworks Based on [Ln2] Magnetic Building Blocks Utilizing 2-Hydroxyisophthalate and Fine-Tuning the Magnetic Properties of Dy Analogues by Terminal Coordinated Solvents. Inorganic Chemistry, 2020, 59, 16924-16935.	4.0	11
35	Synthesis, structure and magnetic properties of cyclic 3d metal clusters based on N–N single bonds of diacylhydrazine ligand. Polyhedron, 2020, 191, 114801.	2.2	0
36	A green separation process of Ag <i>via</i> a Ti ₄ (embonate) ₆ cage. Dalton Transactions, 2020, 49, 17194-17199.	3.3	8

#	Article	IF	CITATIONS
37	Substitution Effects Regulate the Formation of Butterfly-Shaped Tetranuclear Dy(III) Cluster and Dy-Based Hydrogen-Bonded Helix Frameworks: Structure and Magnetic Properties. Inorganic Chemistry, 2020, 59, 11640-11650.	4.0	41
38	A Quasi-Liner {MnIIDyIIIMnII} Cluster Featuring In Situ Schiff Base Ligand Transformation. Journal of Cluster Science, 2020, 32, 1411.	3.3	0
39	Structure and Magnetic Properties of Two Discrete 3dâ€4f Heterometallic Complexes. ChemistrySelect, 2020, 5, 9946-9951.	1.5	2
40	Multifunctional Binuclear Ln(III) Complexes Obtained via <i>In Situ</i> Tandem Reactions: Multiple Photoresponses to Volatile Organic Solvents and Anticounterfeiting and Magnetic Properties. Inorganic Chemistry, 2020, 59, 13774-13783.	4.0	34
41	Assembly Mechanism and Heavy Metal Ion Sensing of Cage-Shaped Lanthanide Nanoclusters. Cell Reports Physical Science, 2020, 1, 100165.	5.6	26
42	Mitochondria-localizing dicarbohydrazide Ln complexes and their mechanism of in vitro anticancer activity. Dalton Transactions, 2020, 49, 4404-4415.	3.3	14
43	Temperatureâ€induced formation of two dinuclear dysprosium complexes with different magnetic properties. Applied Organometallic Chemistry, 2020, 34, e5622.	3.5	5
44	Cyclometalated Ir(III)-8-oxychinolin complexes acting as red-colored probes for specific mitochondrial imaging and anticancer drugs. European Journal of Medicinal Chemistry, 2020, 192, 112192.	5.5	22
45	Assembly of Dy60 and Dy30 cage-shaped nanoclusters. Communications Chemistry, 2020, 3, .	4.5	37
46	Tuning slow magnetic relaxation behaviour in a {Dy ₂ }-based one-dimensional chain <i>via</i> crystal field perturbation. RSC Advances, 2020, 10, 11831-11835.	3.6	3
47	Metal hydrogen-bonded organic frameworks: structure and performance. Dalton Transactions, 2020, 49, 10708-10723.	3.3	46
48	Regulation of the Metal Center and Coordinating Anion of Mononuclear Ln(III) Complexes to Promote an Efficient Luminescence Response to Various Organic Solvents. Langmuir, 2020, 36, 1409-1417.	3.5	9
49	Construction and magnetic properties of hemicyclic "phoenix crown―manganese clusters: Molecular assembly from {Mn5} to {Mn10} cluster. Inorganica Chimica Acta, 2020, 504, 119438.	2.4	5
50	Regulating the slow magnetic relaxation behavior of two different shapes Dy 4 clusters with in situ formed penta―and heptadentate Schiff base ligands. Applied Organometallic Chemistry, 2020, 34, e5808.	3.5	3
51	Metal–Helix Frameworks Formed by <i>î¼</i> ₃ â€NO ₃ ^{â^`} with Different Orientations and Connected to a Heterometallic Cu ^{II} ₁₀ Dy ^{III} ₂ Folded Cluster. Chemistry - A European Iournal. 2019. 25. 10813-10817.	: 3.3	18
52	Step-by-Step and Competitive Assembly of Two Dy(III) Single-Molecule Magnets with Their Performance Tuned by Schiff Base Ligands. Crystal Growth and Design, 2019, 19, 5369-5375.	3.0	38
53	Formation of nanocluster {Dy12} containing Dy-exclusive vertex-sharing [Dy ₄ (μ ₃ -OH) ₄] cubanes <i>via</i> simultaneous multitemplate guided and step-by-step assembly. Dalton Transactions, 2019, 48, 11338-11344.	3.3	49
54	Eighteen 5,7-Dihalo-8-quinolinol and 2,2′-Bipyridine Co(II) Complexes as a New Class of Promising Anticancer Agents. ACS Medicinal Chemistry Letters, 2019, 10, 1603-1608.	2.8	27

#	Article	IF	CITATIONS
55	Two Dy(III) Single-Molecule Magnets with Their Performance Tuned by Schiff Base Ligands. Inorganic Chemistry, 2019, 58, 1191-1200.	4.0	50
56	Synthesis and Photoelectric Properties of Metal–Organic Zeolites Built from TO ₄ and Organotin. Inorganic Chemistry, 2019, 58, 12521-12525.	4.0	3
57	A series of dysprosium-based hydrogen-bonded organic frameworks (Dy–HOFs): thermally triggered off → on conversion of a single-ion magnet. Inorganic Chemistry Frontiers, 2019, 6, 2906-2913.	6.0	42
58	Bifunctional Mononuclear Dysprosium Complexes: Single-Ion Magnet Behaviors and Antitumor Activities. Inorganic Chemistry, 2019, 58, 2286-2298.	4.0	50
59	Tracking the Stepwise Formation of the Dysprosium Cluster (Dy10) with Multiple Relaxation Behavior. Inorganic Chemistry, 2019, 58, 9169-9174.	4.0	68
60	High inÂvitro and inÂvivo antitumor activities of Ln(III) complexes with mixed 5,7-dichloro-2-methyl-8-quinolinol and 4,4ʹ-dimethyl-2,2ʹ-bipyridyl chelating ligands. European Journal of Medicinal Chemistry, 2019, 169, 103-110.	5.5	32
61	Discovery of high <i>in vitro</i> and <i>in vivo</i> antitumor activities of organometallic ruthenium(<scp>ii</scp>)–arene complexes with 5,7-dihalogenated-2-methyl-8-quinolinol. Dalton Transactions, 2019, 48, 5352-5360.	3.3	57
62	Synthesis, Structure and Magnetic Properties of a Fe(III) [24-azaMC-8] Azametallacrown Nanocluster with Diacylhydrazine Ligand. Journal of Cluster Science, 2019, 30, 863-868.	3.3	2
63	Three Dy(<scp>iii</scp>) single-ion magnets bearing the tropolone ligand: structure, magnetic properties and theoretical elucidation. Dalton Transactions, 2019, 48, 6627-6637.	3.3	13
64	Structure and anticancer activities of four Cu(<scp>ii</scp>) complexes bearing tropolone. Metallomics, 2019, 11, 1952-1964.	2.4	18
65	Triethylamine-templated nanocalix Ln ₁₂ clusters of diacylhydrazone: crystal structures and magnetic properties. Dalton Transactions, 2019, 48, 17414-17421.	3.3	17
66	Two mononuclear dysprosium(<scp>iii</scp>) complexes with their slow magnetic relaxation behaviors tuned by coordination geometry. Dalton Transactions, 2019, 48, 16679-16686.	3.3	21
67	Substituents lead to differences in the formation of two different butterfly-shaped Nill2DyIII2 clusters: structures and multistep assembly mechanisms. Dalton Transactions, 2019, 48, 16641-16649.	3.3	18
68	A [Cu3] Cluster-Based Chain Featuring Linkages of Acylhydrazone N–N Single Bonds and Clâ^' Ions: Synthesis, Structure and Magnetic Properties. Journal of Cluster Science, 2019, 30, 219-224.	3.3	2
69	Synthesis, Structure and Magnetic Properties of a Series of Defective Dicubic Ln2Ni2 Clusters. Journal of Cluster Science, 2019, 30, 197-202.	3.3	1
70	Oriented Synthesis of Chair-Shaped Ln3 + Ln3 Clusters and Magnetic Properties. Journal of Cluster Science, 2019, 30, 337-341.	3.3	1
71	Structure and Magnetic Properties of a 3d–4f-Doped Hexagonal Heterometallic Cluster. Journal of Cluster Science, 2019, 30, 25-30.	3.3	2
72	A family of 3d metal clusters based on N–N single bonds bridged quasi-linear trinuclear cores: the Mn analogue displaying single-molecule magnet behavior. RSC Advances, 2018, 8, 6218-6224.	3.6	8

#	Article	IF	CITATIONS
73	Synthesis, crystal structure, and properties of a tetrairon cluster based on 2-methyl-8-hydroxyquinoline. Journal of Coordination Chemistry, 2018, 71, 57-67.	2.2	Ο
74	Heterometallic hexanuclear Ni ₄ M ₂ (M = Dy, Y) complexes: structure and single-molecule magnet for the Dy(<scp>iii</scp>) derivative. Dalton Transactions, 2018, 47, 1801-1807.	3.3	14
75	Diacylhydrazone-assembled {Ln ₁₁ } nanoclusters featuring a "double-boats conformation― topology: synthesis, structures and magnetism. Dalton Transactions, 2018, 47, 2337-2343.	3.3	56
76	Structure and magnetism of two chair-shaped hexanuclear dysprosium(<scp>iii</scp>) complexes exhibiting slow magnetic relaxation. RSC Advances, 2018, 8, 767-774.	3.6	13
77	Synthesis, Structure, and Magnetic Properties of a Twist Linear Tetranuclear Co 2 III Ln 2 III Complexes. Journal of Cluster Science, 2018, 29, 75-81.	3.3	6
78	Mixed chelating ligands used to regulate the luminescence of Ln(<scp>iii</scp>) complexes and single-ion magnet behavior in Dy-based analogues. Dalton Transactions, 2018, 47, 15929-15940.	3.3	29
79	A triangular Dy ₃ single-molecule toroic with high inversion energy barrier: magnetic properties and multiple-step assembly mechanism. Inorganic Chemistry Frontiers, 2018, 5, 3155-3162.	6.0	71
80	Synthesis and biological evaluation of substituted 3-(2′-benzimidazolyl)coumarin platinum(II) complexes as new telomerase inhibitors. Journal of Inorganic Biochemistry, 2018, 189, 143-150.	3.5	24
81	Copper(<scp>ii</scp>) complexes based on quinoline-derived Schiff-base ligands: synthesis, characterization, HSA/DNA binding ability, and anticancer activity. MedChemComm, 2018, 9, 1663-1672.	3.4	24
82	A Multifunctional Lanthanide Carbonate Cluster Based Metal–Organic Framework Exhibits High Proton Transport and Magnetic Entropy Change. Inorganic Chemistry, 2018, 57, 9020-9027.	4.0	47
83	Transition Metal Acetate Promoted Syntheses of Some New <i>N</i> â€Heterocycles by Multicomponent Reactions. Journal of Heterocyclic Chemistry, 2017, 54, 531-538.	2.6	3
84	Synthesis of two potential anticancer copper(<scp>ii</scp>) complex drugs: their crystal structure, human serum albumin/DNA binding and anticancer mechanism. New Journal of Chemistry, 2017, 41, 2062-2072.	2.8	39
85	A series of 3d metal complexes prepared by in situ reactions of a flexible diacylhydrazine ligand: synthesis, structures and magnetic properties. Transition Metal Chemistry, 2017, 42, 17-23.	1.4	5
86	High-nuclearity heterometallic clusters with both an anion and a cation sandwiched by planar cluster units: synthesis, structure and properties. Dalton Transactions, 2017, 46, 15032-15039.	3.3	15
87	Structures and Magnetic Properties of Three Heterobimetallic 3d–4f Hexanuclear Complexes. Journal of Cluster Science, 2017, 28, 3229-3239.	3.3	12
88	Two hydrazone copper(<scp>ii</scp>) complexes: synthesis, crystal structure, cytotoxicity, and action mechanism. RSC Advances, 2016, 6, 36077-36084.	3.6	20
89	Synthesis, crystal structure, cytotoxicity and action mechanism of Zn(<scp>ii</scp>) and Mn(<scp>ii</scp>) complexes with 4-([2,2′:6′,2′′-terpyridin]-4′-yl)-N,N-diethylaniline as a ligand. MedChemComm, 2016, 7, 1132-1137.	3.4	7
90	Manganese clusters of aromatic oximes: synthesis, structure and magnetic properties. Dalton Transactions, 2016, 45, 15634-15643.	3.3	12

#	Article	IF	CITATIONS
91	A single-stranded {Gd ₁₈ } nanowheel with a symmetric polydentate diacylhydrazone ligand. Chemical Communications, 2016, 52, 8297-8300.	4.1	77
92	Synthesis, structure and properties of an octahedral dinuclear-based Cu ₁₂ nanocage of trimesoyltri(<scp>l</scp> -alanine). RSC Advances, 2016, 6, 9911-9915.	3.6	13
93	Synthesis, Structure and Magnetic Properties of a 3D Manganese(II) Framework Featuring a Heptanodal Topology and Tube-in-Tube Dihelical Chains. European Journal of Inorganic Chemistry, 2015, 2015, 1463-1468.	2.0	4
94	One-dimensional Co(II)/Ni(II) complexes of 2-hydroxyisophthalate: Structures and magnetic properties. Journal of Solid State Chemistry, 2015, 226, 36-41.	2.9	4
95	Two Types of Cu-Ln Heterometallic Coordination Polymers with 2-Hydroxyisophthalate: Syntheses, Structures, and Magnetic Properties. Crystal Growth and Design, 2015, 15, 2883-2890.	3.0	35
96	Three discrete transition metal complexes of N-hydroxy-1,8-naphthalimidato ligand: synthesis, structure and magnetic properties. Transition Metal Chemistry, 2015, 40, 839-846.	1.4	2
97	Experimental and theoretical investigations of four 3d–4f butterfly single-molecule magnets. Dalton Transactions, 2015, 44, 18544-18552.	3.3	39
98	Three Linear Trinuclear Zinc(II) Complexes with Acenaphthenequinone Dioxime and the Ancillary Ligand 2â€Aminoâ€2â€methylâ€1â€propanol in Different Coordination Modes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1000-1006.	1.2	2
99	Series of edge-sharing bi-triangle Ln ₄ clusters with a μ ₄ -NO ₃ ^{â~'} bridge: syntheses, structures, luminescence, and the SMM behavior of the Dy ₄ analogue. Dalton Transactions, 2014, 43, 2581-2587.	3.3	37
100	Hydrothermal syntheses, crystal structures and properties of two cobalt(II) complexes constructed from 5-(isonicotinamido)isophthalic acid. Transition Metal Chemistry, 2014, 39, 901-907.	1.4	1
101	A series of 3D metal organic frameworks based on [24-MC-6] metallacrown clusters: structure, magnetic and luminescence properties. Dalton Transactions, 2014, 43, 12989.	3.3	22
102	Copper(II) Clusters of Two Pairs of 2,3â€Dihydroxybutanedioyl Dihydrazones: Synthesis, Structure, and Magnetic Properties. European Journal of Inorganic Chemistry, 2014, 2014, 5783-5792.	2.0	3
103	A Series of Coordination Polymers Exhibiting Dual Chiral Features and Diverse Interhelical Interactions. Crystal Growth and Design, 2013, 13, 3389-3395.	3.0	17
104	Hydrothermal syntheses, crystal structures and fluorescent properties of five transition metal–organic hybrids incorporating an unsymmetrical benzotriazole carboxylate ligand. Transition Metal Chemistry, 2013, 38, 327-334.	1.4	5
105	Synthesis and Structures of Two Dinuclear Transition Metal Complexes and Their Catalytic Applications in Hydrogenation of Ketones. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1834-1839.	1.2	2
106	A six-bladed impeller-like Cu18 nanocluster with S6 symmetry constructed from simple inorganic linkers. Chemical Communications, 2012, 48, 11689.	4.1	21
107	Novel 1D Copper(II) Helical Chain Formed by Weak Coordinationâ€driven Selfâ€assembly: Synthesis, Structure, and Magnetic Property. Chinese Journal of Chemistry, 2012, 30, 1052-1056.	4.9	2
108	Synthesis, crystal structures, and magnetic properties of three isomorphous helical coordination polymers. Transition Metal Chemistry, 2012, 37, 291-296.	1.4	5

#	Article	IF	CITATIONS
109	Structure and fluorescent properties of mercury(ii) pyridine-2,3-dicarboxylate coordination polymers tuned by ancillary ligands and alkaline-earth metal ions. CrystEngComm, 2011, 13, 2029.	2.6	31
110	Complexes based on ferrocenecarboxylate ligands: steric hindrance induced by ferrocenyl groups. Journal of Coordination Chemistry, 2011, 64, 3718-3728.	2.2	3
111	Synthesis and Crystal Structures of Two Metal Complexes Formed in the Solvothermal Decomposition Reactions of N-Carboxyphenylenesulfonyl-S-Carboxymethyl-l-Cysteine. Journal of Chemical Crystallography, 2011, 41, 1510-1514.	1.1	2
112	A 1D zinc(II) polymer with W-like pentanuclear secondary building blocks constructed by 2,6-pyridine-diacylhydrazone ligand. Structural Chemistry, 2011, 22, 559-565.	2.0	5
113	Synthesis, crystal structure, and luminescent properties of metal complexes bearing 2,6-pyridine-diacylhydrazide ligands: supramolecular assemblies via intermolecular interactions. Transition Metal Chemistry, 2011, 36, 369-378.	1.4	9
114	Hydrogen-bonded supramolecular structures constructed from trinuclear copper units. Transition Metal Chemistry, 2011, 36, 653-662.	1.4	6
115	Synthesis, Characterization, and Properties of Four Metal Complexes with Mulitdentate <i>N</i> â€Acylâ€Salicylhydrazide Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 1401-1408.	1.2	9
116	Three Copper(II) Complexes of a "Tritopic―Hydrazone Ligand: Synthesis and Structural Characterization. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 2294-2299.	1.2	5
117	A 1D copper(II) chain featuring novel hexanuclear secondary building blocks: Synthesis, crystal structure and magnetic property. Inorganic Chemistry Communication, 2011, 14, 784-787.	3.9	10
118	Synthesis and crystal structure of heteronuclear La(III) u(II) complex { [LaCu ₂ (NTA) ₂ (4,4′â€bpy)(H ₂ O) ₃]NO ₃ ·5H Chinese Journal of Chemistry, 2000, 18, 828-833.	1 _{2<!--</td--><td>sub>O}<i><s< td=""></s<></i></td>}	su b >O} <i><s< td=""></s<></i>
	Substituents lead to differences in the formation of a series of dysprosium hydrogen-bonded organic		

	Substituents lead to differences in the formation of a series of dysprosium hydrogen-bonded organic		
119	frameworks with high stability and acid stimulus–response luminescence properties. Journal of	5.5	20
	Materials Chemistry C. 0		