Bader Ghanem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11655590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations. ACS Macro Letters, 2015, 4, 947-951.	2.3	336
2	Physical Aging, Plasticization and Their Effects on Gas Permeation in "Rigid―Polymers of Intrinsic Microporosity. Macromolecules, 2015, 48, 6553-6561.	2.2	263
3	The potential of organic polymer-based hydrogen storage materials. Physical Chemistry Chemical Physics, 2007, 9, 1802.	1.3	197
4	Rational Design of Intrinsically Ultramicroporous Polyimides Containing Bridgehead-Substituted Triptycene for Highly Selective and Permeable Gas Separation Membranes. Macromolecules, 2014, 47, 5104-5114.	2.2	163
5	A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an adsorbent and catalyst support. Journal of Materials Chemistry, 2003, 13, 2721-2726.	6.7	128
6	Pure- and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation. Journal of Membrane Science, 2016, 505, 100-107.	4.1	107
7	Role of Intrachain Rigidity in the Plasticization of Intrinsically Microporous Triptycene-Based Polyimide Membranes in Mixed-Gas CO ₂ /CH ₄ Separations. Macromolecules, 2014, 47, 7453-7462.	2.2	106
8	Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation. Science Advances, 2019, 5, eaaw5459.	4.7	106
9	Synthesis and Effect of Physical Aging on Gas Transport Properties of a Microporous Polyimide Derived from a Novel Spirobifluorene-Based Dianhydride. ACS Macro Letters, 2015, 4, 231-235.	2.3	96
10	Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides. Journal of Membrane Science, 2015, 490, 321-327.	4.1	95
11	Effects of hydroxyl-functionalization and sub-T thermal annealing on high pressure pure- and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing dianhydrides. Journal of Membrane Science, 2015, 475, 571-581.	4.1	95
12	High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation. Polymer, 2016, 91, 128-135.	1.8	65
13	Novel 6FDA-based polyimides derived from sterically hindered Tröger's base diamines: Synthesis and gas permeation properties. Polymer, 2016, 96, 13-19.	1.8	60
14	Pure- and mixed-gas propylene/propane permeation properties of spiro- and triptycene-based microporous polyimides. Journal of Membrane Science, 2015, 492, 116-122.	4.1	57
15	Synthesis and Characterization of a Novel Microporous Dihydroxylâ€Functionalized Triptyceneâ€Diamineâ€Based Polyimide for Natural Gas Membrane Separation. Macromolecular Rapid Communications, 2017, 38, 1700303.	2.0	56
16	Synthesis and gas permeation properties of a novel thermally-rearranged polybenzoxazole made from an intrinsically microporous hydroxyl-functionalized triptycene-based polyimide precursor. Polymer, 2017, 121, 9-16.	1.8	53
17	Experimental Mixed-Gas Permeability, Sorption and Diffusion of CO2-CH4 Mixtures in 6FDA-mPDA Polyimide Membrane: Unveiling the Effect of Competitive Sorption on Permeability Selectivity. Membranes, 2019, 9, 10.	1.4	51
18	Synthesis and characterization of novel triptycene dianhydrides and polyimides of intrinsic microporosity based on 3,3ʹ-dimethylnaphthidine. Polymer, 2016, 101, 225-232.	1.8	50

BADER GHANEM

#	Article	IF	CITATIONS
19	Triptycene dimethyl-bridgehead dianhydride-based intrinsically microporous hydroxyl-functionalized polyimide for natural gas upgrading. Journal of Membrane Science, 2016, 520, 240-246.	4.1	50
20	How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids?. Journal of Physical Chemistry B, 2016, 120, 10403-10410.	1.2	27
21	High-Pressure CO ₂ Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement. ACS Applied Materials & Interfaces, 2018, 10, 11369-11376.	4.0	23
22	How Do Organic Vapors Swell Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1?. Journal of Physical Chemistry B, 2017, 121, 7210-7220.	1.2	22
23	Synthesis and Gas-Permeation Characterization of a Novel High-Surface Area Polyamide Derived from 1,3,6,8-Tetramethyl-2,7-diaminotriptycene: Towards Polyamides of Intrinsic Microporosity (PIM-PAs). Polymers, 2019, 11, 361.	2.0	22
24	New phenazine-containing ladder polymer of intrinsic microporosity from a spirobisindane-based AB-type monomer. RSC Advances, 2016, 6, 79625-79630.	1.7	21
25	A unique 3D ultramicroporous triptycene-based polyimide framework for efficient gas sorption applications. RSC Advances, 2016, 6, 97560-97565.	1.7	18
26	Mixed-Penetrant Sorption in Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1. Journal of Physical Chemistry B, 2017, 121, 10190-10197.	1.2	14