Suma Jacob

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1165525/publications.pdf Version: 2024-02-01

SUMA LACOR

#	Article	IF	CITATIONS
1	Large multicenter randomized trials in autism: key insights gained from the balovaptan clinical development program. Molecular Autism, 2022, 13, .	4.9	10
2	Phenoscreening: a developmental approach to research domain criteriaâ€motivated sampling. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 884-894.	5.2	5
3	Whole Blood Serotonin Levels and Platelet 5-HT2A Binding in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 2019, 49, 2417-2425.	2.7	10
4	Hypoconnectivity of insular resting-state networks in adolescents with Autism Spectrum Disorder. Psychiatry Research - Neuroimaging, 2019, 283, 104-112.	1.8	16
5	SPARK: A US Cohort of 50,000 Families to Accelerate Autism Research. Neuron, 2018, 97, 488-493.	8.1	265
6	The journey to autism: Insights from neuroimaging studies of infants and toddlers. Development and Psychopathology, 2018, 30, 479-495.	2,3	100
7	Chronic Intranasal Oxytocin has Dose-dependent Effects on Central Oxytocin and Vasopressin Systems in Prairie Voles (Microtus ochrogaster). Neuroscience, 2018, 369, 292-302.	2.3	37
8	Insistence on sameness and broader autism phenotype in simplex families with autism spectrum disorder. Autism Research, 2018, 11, 1253-1263.	3.8	1
9	ls there sexual dimorphism of hyperserotonemia in autism spectrum disorder?. Autism Research, 2017, 10, 1417-1423.	3.8	24
10	Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nature Genetics, 2017, 49, 978-985.	21.4	401
11	Variants in Adjacent Oxytocin/Vasopressin Gene Region and Associations with ASD Diagnosis and Other Autism Related Endophenotypes. Frontiers in Neuroscience, 2016, 10, 195.	2.8	21
12	ASD and Genetic Associations with Receptors for Oxytocin and Vasopressin—AVPR1A, AVPR1B, and OXTR. Frontiers in Neuroscience, 2016, 10, 516.	2.8	38
13	Function, not behavior, driving diagnosis and treatment of ASD in RDoC project. The Brown University Child and Adolescent Behavior Letter, 2016, 32, 1-6.	0.1	0
14	Urinary and plasma oxytocin changes in response to MDMA or intranasal oxytocin administration. Psychoneuroendocrinology, 2016, 74, 92-100.	2.7	30
15	Escitalopram pharmacogenetics. Pharmacogenetics and Genomics, 2015, 25, 548-554.	1.5	22
16	Pharmacogenetic Study of Serotonin Transporter and 5HT2A Genotypes in Autism. Journal of Child and Adolescent Psychopharmacology, 2015, 25, 467-474.	1.3	11
17	Preliminary evidence for the interaction of the oxytocin receptor gene (oxtr) and face processing in differentiating prenatal smoking patterns. Neuroscience Letters, 2015, 584, 259-264.	2.1	14
18	Genetic imaging of the association of oxytocin receptor gene (OXTR) polymorphisms with positive maternal parenting. Frontiers in Behavioral Neuroscience, 2014, 8, 21.	2.0	64

Suma Jacob

#	Article	IF	CITATIONS
19	The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism. Nature Communications, 2014, 5, 4074.	12.8	52
20	Long-term exposure to intranasal oxytocin in a mouse autism model. Translational Psychiatry, 2014, 4, e480-e480.	4.8	112
21	A Deletion Involving <scp><i>CD</i></scp> <i>38</i> and <scp><i>BST</i></scp> <i>1</i> Results in a Fusion Transcript in a Patient With Autism and Asthma. Autism Research, 2014, 7, 254-263.	3.8	34
22	Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders. American Journal of Human Genetics, 2014, 94, 677-694.	6.2	819
23	Plasma oxytocin concentrations following MDMA or intranasal oxytocin in humans. Psychoneuroendocrinology, 2014, 46, 23-31.	2.7	72
24	Oxytocin and vasopressin systems in genetic syndromes and neurodevelopmental disorders. Brain Research, 2014, 1580, 199-218.	2.2	88
25	Effects of MDMA and Intranasal Oxytocin on Social and Emotional Processing. Neuropsychopharmacology, 2014, 39, 1654-1663.	5.4	102
26	Intranasal oxytocin in the treatment of autism spectrum disorders: A review of literature and early safety and efficacy data in youth. Brain Research, 2014, 1580, 188-198.	2.2	134
27	Chronic Intranasal Oxytocin Causes Long-Term Impairments in Partner Preference Formation in Male Prairie Voles. Biological Psychiatry, 2013, 74, 180-188.	1.3	225
28	Parental Broader Autism Subphenotypes in <scp>ASD</scp> Affected Families: Relationship to Gender, Child's Symptoms, <scp>SSRI</scp> Treatment, and Platelet Serotonin. Autism Research, 2013, 6, 621-630.	3.8	16
29	COMPARISON OF BEHAVIORAL PROFILES FOR ANXIETY-RELATED COMORBIDITIES INCLUDING ADHD AND SELECTIVE MUTISM IN CHILDREN. Depression and Anxiety, 2013, 30, 857-864.	4.1	22
30	Individual common variants exert weak effects on the risk for autism spectrum disorders. Human Molecular Genetics, 2012, 21, 4781-4792.	2.9	334
31	Examining Autism Spectrum Disorders by Biomarkers: Example From the Oxytocin and Serotonin Systems. Journal of the American Academy of Child and Adolescent Psychiatry, 2012, 51, 712-721.e1.	O.5	65
32	Rare inherited <i>A2BP1</i> deletion in a proband with autism and developmental hemiparesis. American Journal of Medical Genetics, Part A, 2012, 158A, 1654-1661.	1.2	36
33	Family-based association testing of glutamate transporter genes in autism. Psychiatric Genetics, 2011, 21, 212-213.	1.1	17
34	Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders. European Journal of Human Genetics, 2011, 19, 1082-1089.	2.8	39
35	Repetitive behavior profiles: Consistency across autism spectrum disorder cohorts and divergence from Prader–Willi syndrome. Journal of Neurodevelopmental Disorders, 2011, 3, 316-324.	3.1	22
36	A quantitative association study of SLC25A12 and restricted repetitive behavior traits in autism spectrum disorders. Molecular Autism, 2011, 2, 8.	4.9	25

Suma Jacob

#	Article	IF	CITATIONS
37	Sequence variations at the human leukocyte antigen–linked olfactory receptor cluster do not influence female preferences for male odors. Human Immunology, 2010, 71, 100-103.	2.4	10
38	Neonatal physiological regulation is associated with perinatal factors: A study of neonates born to healthy African American women living in poverty. Infant Mental Health Journal, 2009, 30, 82-94.	1.8	19
39	Autism spectrum and obsessive–compulsive disorders: OC behaviors, phenotypes and genetics. Autism Research, 2009, 2, 293-311.	3.8	68
40	Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neuroscience Letters, 2007, 417, 6-9.	2.1	409
41	Diagnosis and Treatment of Conduct Disorder. AMA Journal of Ethics, 2006, 8, 672-675.	0.7	0
42	Human Body Scents: Conscious Perceptions and Biological Effects. Chemical Senses, 2005, 30, i135-i137.	2.0	18
43	Effects of breastfeeding chemosignals on the human menstrual cycle. Human Reproduction, 2004, 19, 422-429.	0.9	26
44	Women's sexual experience during the menstrual cycle: Identification of the sexual phase by noninvasive measurement of luteinizing hormone. Journal of Sex Research, 2004, 41, 82-93.	2.5	144
45	Social chemosignals from breastfeeding women increase sexual motivation. Hormones and Behavior, 2004, 46, 362-370.	2.1	37
46	Psychological Effects of Musky Compounds: Comparison of Androstadienone with Androstenol and Muscone. Hormones and Behavior, 2002, 42, 274-283.	2.1	72
47	Paternally inherited HLA alleles are associated with women's choice of male odor. Nature Genetics, 2002, 30, 175-179.	21.4	411
48	Reply to "The MHC and body odors: arbitrary effects caused by shifts of mean pleasantness― Nature Genetics, 2002, 31, 237-238.	21.4	8
49	Context-dependent effects of steroid chemosignals on human physiology and mood. Physiology and Behavior, 2001, 74, 15-27.	2.1	134
50	Sustained human chemosignal unconsciously alters brain function. NeuroReport, 2001, 12, 2391-2394.	1.2	96
51	Psychological State and Mood Effects of Steroidal Chemosignals in Women and Men. Hormones and Behavior, 2000, 37, 57-78.	2.1	187