Göran Sandberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11655171/publications.pdf Version: 2024-02-01

CÃODAN SANDREDC

#	Article	IF	CITATIONS
1	Auxin Transport Promotes Arabidopsis Lateral Root Initiation. Plant Cell, 2001, 13, 843-852.	6.6	930
2	Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants. Cell, 2008, 133, 164-176.	28.9	928
3	AtPIN4 Mediates Sink-Driven Auxin Gradients and Root Patterning in Arabidopsis. Cell, 2002, 108, 661-673.	28.9	763
4	The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 2008, 10, 946-954.	10.3	715
5	A PINOID-Dependent Binary Switch in Apical-Basal PIN Polar Targeting Directs Auxin Efflux. Science, 2004, 306, 862-865.	12.6	703
6	Dissecting Arabidopsis lateral root development. Trends in Plant Science, 2003, 8, 165-171.	8.8	618
7	Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes and Development, 2001, 15, 2648-2653.	5.9	571
8	Ethylene Upregulates Auxin Biosynthesis in <i>Arabidopsis</i> Seedlings to Enhance Inhibition of Root Cell Elongation. Plant Cell, 2007, 19, 2186-2196.	6.6	536
9	Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant Journal, 2002, 28, 465-474.	5.7	531
10	Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2987-2991.	7.1	509
11	Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8039-8044.	7.1	497
12	Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16598-16603.	7.1	485
13	Arabidopsis KNOXI Proteins Activate Cytokinin Biosynthesis. Current Biology, 2005, 15, 1566-1571.	3.9	474
14	AUX1 Promotes Lateral Root Formation by Facilitating Indole-3-Acetic Acid Distribution between Sink and Source Tissues in the Arabidopsis Seedling. Plant Cell, 2002, 14, 589-597.	6.6	473
15	Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots. Plant Cell, 2005, 17, 1090-1104.	6.6	466
16	Shoot-derived auxin is essential for early lateral root emergence inArabidopsisseedlings. Plant Journal, 2002, 29, 325-332.	5.7	463
17	An Auxin Gradient and Maximum in the <i>Arabidopsis</i> Root Apex Shown by High-Resolution Cell-Specific Analysis of IAA Distribution and Synthesis. Plant Cell, 2009, 21, 1659-1668.	6.6	439
18	A High-Resolution Transcript Profile across the Wood-Forming Meristem of Poplar Identifies Potential Regulators of Cambial Stem Cell Identity[W]. Plant Cell, 2004, 16, 2278-2292.	6.6	353

#	Article	IF	CITATIONS
19	Auxin and Light Control of Adventitious Rooting in Arabidopsis Require ARGONAUTE1. Plant Cell, 2005, 17, 1343-1359.	6.6	339
20	Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications. Genome Research, 2004, 14, 2176-2189.	5.5	282
21	A Populus EST resource for plant functional genomics. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13951-13956.	7.1	278
22	Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant Journal, 1997, 12, 1339-1350.	5.7	264
23	Cytokinin Regulation of Auxin Synthesis in <i>Arabidopsis</i> Involves a Homeostatic Feedback Loop Regulated via Auxin and Cytokinin Signal Transduction Â. Plant Cell, 2010, 22, 2956-2969.	6.6	247
24	Identification and Biochemical Characterization of anArabidopsis Indole-3-acetic Acid Glucosyltransferase. Journal of Biological Chemistry, 2001, 276, 4350-4356.	3.4	242
25	bus, a Bushy Arabidopsis CYP79F1 Knockout Mutant with Abolished Synthesis of Short-Chain Aliphatic Glucosinolates. Plant Cell, 2001, 13, 351-367.	6.6	235
26	A transcriptional timetable of autumn senescence. Genome Biology, 2004, 5, R24.	9.6	226
27	A Family of Auxin-Conjugate Hydrolases That Contributes to Free Indole-3-Acetic Acid Levels during Arabidopsis Germination. Plant Physiology, 2004, 135, 978-988.	4.8	220
28	A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 236-241.	7.1	210
29	The <i>Populus</i> Genome Integrative Explorer (PopGenIE): a new resource for exploring the <i>Populus</i> genome. New Phytologist, 2009, 182, 1013-1025.	7.3	208
30	Soluble Carbohydrates Regulate Auxin Biosynthesis via PIF Proteins in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 24, 4907-4916.	6.6	205
31	Dissecting the Molecular Basis of the Regulation of Wood Formation by Auxin in Hybrid Aspen. Plant Cell, 2008, 20, 843-855.	6.6	194
32	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology, 2002, 50, 309-332.	3.9	191
33	Quantitative Analysis of Indole-3-Acetic Acid Metabolites in Arabidopsis. Plant Physiology, 2001, 127, 1845-1853.	4.8	184
34	Carbohydrate-Active Enzymes Involved in the Secondary Cell Wall Biogenesis in Hybrid Aspen. Plant Physiology, 2005, 137, 983-997.	4.8	173
35	STY1regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant Journal, 2006, 47, 112-123.	5.7	172
36	Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes and Development, 2001, 15, 1577-1588.	5.9	169

#	Article	IF	CITATIONS
37	FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes and Development, 2002, 16, 753-763.	5.9	166
38	SHORT-ROOT Regulates Primary, Lateral, and Adventitious Root Development in Arabidopsis Â. Plant Physiology, 2011, 155, 384-398.	4.8	163
39	Title is missing!. Plant Molecular Biology, 2002, 49, 249-272.	3.9	145
40	Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transgenic Research, 1992, 1, 209-220.	2.4	138
41	Maintenance of Embryonic Auxin Distribution for Apical-Basal Patterning by PIN-FORMED–Dependent Auxin Transport in Arabidopsis. Plant Cell, 2005, 17, 2517-2526.	6.6	135
42	Transgenic Tobacco Plants Coexpressing the <i>Agrobacterium tumefaciens iaaM</i> and <i>iaaH</i> Genes Display Altered Growth and Indoleacetic Acid Metabolism. Plant Physiology, 1992, 99, 1062-1069.	4.8	132
43	Cell Polarity Signaling in Arabidopsis Involves a BFA-Sensitive Auxin Influx Pathway. Current Biology, 2002, 12, 329-334.	3.9	131
44	Regulation of Auxin Homeostasis and Gradients in <i>Arabidopsis</i> Roots through the Formation of the Indole-3-Acetic Acid. Plant Cell, 2013, 25, 3858-3870.	6.6	131
45	Over-expression of anArabidopsisgene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines. Plant Journal, 2002, 32, 573-583.	5.7	130
46	Environmental and auxin regulation of wood formation involves members of theAux/IAAgene family in hybrid aspen. Plant Journal, 2002, 31, 675-685.	5.7	119
47	The Arabidopsis AtlPT8/PGA22 Gene Encodes an Isopentenyl Transferase That Is Involved in De Novo Cytokinin Biosynthesis. Plant Physiology, 2003, 131, 167-176.	4.8	119
48	The role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant Journal, 2002, 28, 607-617.	5.7	112
49	Proteomic Analysis of Different Mutant Genotypes of Arabidopsis Led to the Identification of 11 Proteins Correlating with Adventitious Root Development. Plant Physiology, 2006, 140, 349-364.	4.8	104
50	Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology, 2013, 9, 699.	7.2	104
51	Developmental Regulation of Indole-3-Acetic Acid Turnover in Scots Pine Seedlings. Plant Physiology, 2001, 125, 464-475.	4.8	99
52	Analysis of Indole-3-Acetic Acid and Related Indoles in Culture Medium from <i>Azospirillum lipoferum</i> and <i>Azospirillum brasilense</i> . Applied and Environmental Microbiology, 1988, 54, 2833-2837.	3.1	98
53	Ubiquitin Lysine 63 Chain–Forming Ligases Regulate Apical Dominance in Arabidopsis. Plant Cell, 2007, 19, 1898-1911.	6.6	97
54	Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing theAgrobacterium rhizogenes rolBgene. Plant Journal, 1993, 3, 681-689.	5.7	89

Göran Sandberg

#	Article	IF	CITATIONS
55	Derivatization for LC-Electrospray Ionization-MS:Â A Tool for Improving Reversed-Phase Separation and ESI Responses of Bases, Ribosides, and Intact Nucleotides. Analytical Chemistry, 2004, 76, 2869-2877.	6.5	89
56	Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus × canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. Physiologia Plantarum, 2003, 117, 579-590.	5.2	83
57	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology, 2002, 49, 249-72.	3.9	70
58	Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin- and cytokinin-overproducing phenotypes. Plant Journal, 2000, 23, 279-284.	5.7	66
59	Free and Conjugated Indoleacetic Acid (IAA) Contents in Transgenic Tobacco Plants Expressing the <i>iaaM</i> and <i>iaaH</i> IAA Biosynthesis Genes from <i>Agrobacterium tumefaciens</i> . Plant Physiology, 1991, 95, 480-485.	4.8	64
60	Activation of CDK-activating kinase is dependent on interaction with H-type cyclins in plants. Plant Journal, 2000, 24, 11-20.	5.7	62
61	cDNA microarray analysis of small plant tissue samples using a cDNA tag target amplification protocol. Plant Journal, 2001, 25, 585-591.	5.7	61
62	Out of the woods: forest biotechnology enters the genomic era. Current Opinion in Biotechnology, 2003, 14, 206-213.	6.6	61
63	Levels of endogenous indole-3-acetic acid in the vascular cambium region of Abies balsamea trees during the activity - rest - quiescence transition. Physiologia Plantarum, 1987, 71, 163-170.	5.2	58
64	Expression of two heterologous promoters, Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy. Plant Molecular Biology, 1996, 31, 887-895.	3.9	57
65	Disruptions in AUX1-Dependent Auxin Influx Alter Hypocotyl Phototropism in Arabidopsis. Molecular Plant, 2008, 1, 129-144.	8.3	53
66	Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes in Vibrio harveyi. Gene, 1989, 81, 335-347.	2.2	52
67	Identification of 4-chloroindole-3-acetic acid and indole-3-aldehyde in seeds of Pinus sylvestris. Physiologia Plantarum, 1986, 68, 511-518.	5.2	51
68	Effects of Adrenergic Alpha―and Betaâ€Receptor Stimulation on the Release of Lymphocytes and Granulocytes from the Spleen. Scandinavian Journal of Haematology, 1973, 11, 275-286.	0.0	51
69	Identification of 3-indoleacetic acid in pinus sylvestris L. by gas chromatography-mas spectrometry, and quantitative analysis by ion-pair reversed-phase liquid chromatography wit spectrofluorimetric detection. Journal of Chromatography A, 1981, 205, 125-137.	3.7	47
70	Metabolism of Indole-3-Acetic Acid by Pericarp Discs from Immature and Mature Tomato (Lycopersicon) Tj ETQq	0 0 0 rgBT 4.8	/Overlock 10
71	Analysis of 3-indole carboxylic acid in Pinus sylvestris needles. Phytochemistry, 1984, 23, 99-102.	2.9	46

72	The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth. Planta, 2000, 211, 715-721.	3.2	46

#	Article	IF	CITATIONS
73	hca: an Arabidopsis mutant exhibiting unusual cambial activity and altered vascular patterning. Plant Journal, 2005, 44, 271-289.	5.7	41
74	Precolumn derivatization and capillary liquid chromatographic/frit-fast atom bombardment mass spectrometric analysis of cytokinins inArabidopsis thaliana. , 1998, 33, 892-902.		38
75	Liquid chromatography/mass spectrometry of conjugates and oxidative metabolites of indole-3-acetic acid. Biological Mass Spectrometry, 1992, 21, 292-298.	0.5	37
76	Identification of endogenous N-(3-indoleacetyl)aspartic acid in scots pine(Pinus sylvestris L.)by combined gas chromatography-mass spectrometry, using high-performance liquid chromatography for quantification. Journal of Chromatography A, 1982, 238, 151-156.	3.7	35
77	Identification and Quantification of Indole-3-methanol in Etiolated Seedlings of Scots Pine (Pinus) Tj ETQq1 1 0.	7843]4 rgi 4.8	BT (Overlock
78	Metabolism of indole-3-acetic acid by orange (Citrus sinensis) flavedo tissue during fruit development. Phytochemistry, 2001, 57, 179-187.	2.9	35
79	Precision and accuracy of radioimmunoassay in the analysis of endogenous 3-indoleacetic acid from needles of scots pine. Phytochemistry, 1985, 24, 1439-1442.	2.9	33
80	Inhibition by xanthine derivatives of adenosine receptorâ€stimulated cyclic adenosine 3′, 5′â€monophosphate accumulation in rat and guineaâ€pig thymocytes. British Journal of Pharmacology, 1983, 80, 639-644.	5.4	32
81	Reduced Expression of the SHORT-ROOT Gene Increases the Rates of Growth and Development in Hybrid Poplar and Arabidopsis. PLoS ONE, 2011, 6, e28878.	2.5	32
82	Cyclic amp in freshly prepared thymocyte suspensions. evidence for stimulation by endogenous adenosine. Biochemical Pharmacology, 1978, 27, 2675-2682.	4.4	30
83	Dynamics of indole-3-acetic acid and indole-3-ethanol during development and germination of Pinus sylvestris seeds. Physiologia Plantarum, 1987, 71, 411-418.	5.2	29
84	Analysis of Indole-3-Acetic Acid Metabolites from Dalbergia dolichopetala by High Performance Liquid Chromatography-Mass Spectrometry. Plant Physiology, 1992, 100, 63-68.	4.8	28
85	Purification of indole-3-acetic acid in plant extracts by immunoaffinity chromatography. Phytochemistry, 1986, 25, 295-298.	2.9	27
86	Presence of indole-3-acetic acid in chloroplasts ofNicotiana tabacum andPinus sylvestris. Planta, 1990, 180, 562-568.	3.2	25
87	Biosynthesis of indole-3-acetic acid in protoplasts, chloroplasts and a cytoplasmic fraction from barley (Hordeum vulgare L.). Planta, 1982, 156, 541-545.	3.2	24
88	MIGRATION OF SPLENIC LYMPHOCYTES. Acta Pathologica Et Microbiologica Scandinavica, 1968, 72, 379-384.	0.0	22
89	Stable-isotope labeled metabolites of the phytohormone, indole-3-acetic acid. Journal of Labelled Compounds and Radiopharmaceuticals, 1997, 39, 433-440.	1.0	19
90	Identification of glucopyranosyl-β-1,4-glucopyranosyl-β-1-N-oxindole-3-acetyl-N-aspartic acid, a new IAA catabolite, by liquid chromatography/tandem mass spectrometry. Journal of Mass Spectrometry, 1995, 30, 1007-1017.	1.6	18

#	Article	IF	CITATIONS
91	Chromatography of acid phytohormones on columns of Sephadex LH-20 and insoluble poly-N-vinylpyrrolidone, and application to the analysis of conifer extracts. Physiologia Plantarum, 1981, 53, 219-224.	5.2	17
92	Indole-3-acetic acid and indole-3-ethanol in light-grown Pisum sativum seedlings and their localization in chloroplast fractions. Phytochemistry, 1986, 25, 299-302.	2.9	17
93	Deuteriumin vivo labelling of cytokinins inArabidopsis thaliana analysed by capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. , 2000, 35, 13-22.		17
94	Splenic Blood Flow in the Guineaâ€Pig Measured with Xenon 133, and Calculation of the Venous Output of Lymphocytes from the Spleen. Acta Physiologica Scandinavica, 1972, 84, 208-216.	2.2	16
95	Title is missing!. Plant Growth Regulation, 2002, 36, 181-189.	3.4	15
96	Increased Endogenous Auxin Production in Arabidopsis thaliana Causes Both Earlier Described and Novel Auxin-Related Phenotypes. Journal of Plant Growth Regulation, 2003, 22, 240-252.	5.1	15
97	Catabolism of indole-3-acetic acid to indole-3-methanol in a crude enzyme extract and in protoplasts from Scots pine (Pinus sylvestris). Physiologia Plantarum, 1985, 64, 438-444.	5.2	14
98	Effects of sodium diethyldithiocarbamate, solvent, temperature and plant extracts on the stability of indoles. Physiologia Plantarum, 1986, 68, 519-522.	5.2	14
99	Correlation between the expression of T-DNA IAA biosynthetic genes from developmentally regulated promoters and the distribution of IAA in different organs of transgenic tobacco. Physiologia Plantarum, 1992, 85, 679-688.	5.2	14
100	Separation and identification of cytokinins using combined capillary liquid chromatography/mass spectrometry. Biological Mass Spectrometry, 1993, 22, 201-210.	0.5	14
101	Release of Splenic Cells into the Blood of Guineaâ€Pigs of Different Ages. Scandinavian Journal of Haematology, 1970, 7, 104-111.	0.0	14
102	Methods of Plant Hormone Analysis. , 2010, , 717-740.		14
103	Precision and accuracy of indole-3-acetic acid analyses performed with the 2-methylindolo-alpha-pyrone fluorescence assay and with a high performance liquid chromatography technique with spectrofluorimetric detection, exemplified on pine tissue (Pinus sylvestris L.). Physiologia Plantarum, 1982, 55, 315-322.	5.2	13
104	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. , 2002, , 249-272.		13
105	Detection of abscisic acid, indole-3-acetic acid and indole-3-ethanol in seeds of Dalbergia dolichopetala. Phytochemistry, 1987, 26, 327-328.	2.9	11
106	Synthesis of the β-D-glucosyl ester of [carbonyl-13C]-indole-3-acetic acid. Journal of Labelled Compounds and Radiopharmaceuticals, 1993, 33, 933-939.	1.0	11
107	Population variation and diurnal changes in the content of indole-3-acetic acid of pine seedlings (Pinus sylvestris L.) grown in a controlled environment. Physiologia Plantarum, 1982, 54, 375-380. ––––––––––––––––––––––––––––––––––––	5.2	10
108	Probing cytokinin homeostasis in Arabidopsis thaliana by constitutively overexpressing two forms of the maize cytokinin oxidase/dehydrogenase 1 gene. Plant Science, 2006, 171, 114-122.	3.6	10

#	Article	IF	CITATIONS
109	REGULATION OF OUTPUT OF LYMPHOCYTES FROM THE SPLEEN. Acta Pathologica Et Microbiologica Scandinavica, 1969, 76, 52-60.	0.0	9
110	Effects of a short-day treatment on pool size, synthesis, degradation and transport of 3-indole-acetic acid in Scots pine (Pinus sylvestris L.) seedlings. Physiologia Plantarum, 1982, 55, 309-314.	5.2	8
111	Effects of light on the catabolism of [2-14C]-3-indole acetic acid in protoplasts, a chloroplast-rich fraction, and a crude cytoplasmic preparation from barley (Hordeum vulgare L). Plant, Cell and Environment, 1983, 6, 111-115.	5.7	8
112	Effect of L-alanine and some other amino acids on thymocyte proliferation in vivo. Immunobiology, 1993, 188, 62-69.	1.9	8
113	On the Origin of FoÃâ€Kurloff Cells. Scandinavian Journal of Haematology, 1971, 8, 380-391.	0.0	8
114	REGULATION OF OUTPUT OF LYMPHOCYTES FROM THE SPLEEN. Acta Pathologica Et Microbiologica Scandinavica, 1969, 76, 43-51.	0.0	6
115	Endogenous Hormones, Germination and Early Seedling Growth of Dalbergia dolicbopetala. Journal of Plant Physiology, 1988, 132, 762-765.	3.5	5
116	Venous Output of ³ Hâ€Thymidine‣abelled Lymphocytes from the Spleen. Scandinavian Journal of Haematology, 1972, 9, 387-395.	0.0	5
117	Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing the Agrobacterium rhizogenes rolB gene. Plant Journal, 1993, 3, 681-689.	5.7	5
118	Studies on thymocyte subpopulations in guinea pigs: in vivo differentiation of bromodeoxyuridine labelled cells, with special reference to rosette-forming ability. Immunology Letters, 1989, 21, 249-255.	2.5	4
119	Indole-3-acetic Acid Content in Buds of Five Willow Genotypes. Journal of Plant Physiology, 1986, 125, 485-489.	3.5	3
120	Effects of growth regulators on germination of picea abies and Pinus sylvestris seeds. Scandinavian Journal of Forest Research, 1988, 3, 83-95.	1.4	3
121	In vivo stimulation of thymocyte proliferation by thymocyte growth peptide (TGP). International Journal of Immunopharmacology, 1991, 13, 649-654.	1.1	3
122	Correlation between the expression of T-DNA IAA biosynthetic genes from developmentally regulated promoters and the distribution of IAA in different organs of transgenic tobacco. Physiologia Plantarum, 1992, 85, 679-688.	5.2	3
123	Application of growth regulators in aqueous media and organic solvents to seeds of <i>Picea abies</i> and <i>Pinus sylvestris</i> . Scandinavian Journal of Forest Research, 1988, 3, 97-105.	1.4	2
124	Release of Lymphocytes from the Spleen in Neonatally Thymectomized Guineaâ€Pigs. Scandinavian Journal of Haematology, 1972, 9, 52-60.	0.0	1
125	EFFECT OF PRIMARY IMMUNIZATION WITH SHEEP ERYTHROCYTES ON THE RELEASE OF CELLS FROM THE SPLEEN AND ON PERIPHERAL BLOOD LYMPHOCYTE POPULATION IN YOUNG GUINEAâ€PIGS. Acta Pathologica Et Microbiologica Scandinavica - Section B Microbiology and Immunology, 1970, 78B, 277-284.	0.0	1
126	RELEASE OF ANTIGENâ€BINDING CELLS FROM THE SPLEEN INTO THE BLOOD. Acta Pathologica Et Microbiologica Scandinavica Section A, Pathology, 1972, 80A, 477-486.	0.1	1

#	ARTICLE	IF	CITATIONS
127	INFLUENCE OF THYMECTOMY, TRANSFER OF THYMUS AND BONE MARROW CELLS AND TREATMENT WITH THYMOSIN ON THE DEPRESSED SPLENIC RELEASE OF LYMPHOCYTES INTO THE BLOOD AFTER IRRADIATION. Acta Pathologica Et Microbiologica Scandinavica Section A, Pathology, 1975, 83A, 360-368.	0.1	1
128	Functional Genomics Approach to Elucidate the Regulation of Vascular Development in Poplar. , 2005, , 49-62.		0
129	Functional Genomics of Wood Formation in Hybrid Aspen. , 2003, , 453-454.		0
130	A Genomic Approach to Elucidate Gene Function during Wood Formation. , 2003, , 433-438.		0