Pär Byström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11655089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Habitat-Specific Primary Production on Fish Size, Biomass, and Production in Northern Oligotrophic Lakes. Ecosystems, 2022, 25, 1555-1570.	3.4	6
2	Droplet digital PCR applied to environmental DNA, a promising method to estimate fish population abundance from humicâ ϵ_{i} ich aquatic ecosystems. Environmental DNA, 2021, 3, 343-352.	5.8	26
3	An experimental test of climate change effects in northern lakes: Increasing allochthonous organic matter and warming alters autumn primary production. Freshwater Biology, 2021, 66, 815-825.	2.4	10
4	Effects of filtration methods and water volume on the quantification of brown trout (<i>Salmo) Tj ETQq0 0 0 rgB1 Environmental DNA, 2020, 2, 152-160.</i>	/Overlock 5.8	2 10 Tf 50 6
5	The first large-scale assessment of three-spined stickleback (Gasterosteus aculeatus) biomass and spatial distribution in the Baltic Sea. ICES Journal of Marine Science, 2019, 76, 1653-1665.	2.5	23
6	Droplet digital PCR assays for the quantification of brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus)Âfrom environmental DNA collected in the water of mountain lakes. PLoS ONE, 2019, 14, e0226638.	2.5	33
7	Bottomâ€up and topâ€down effects of browning and warming on shallow lake food webs. Global Change Biology, 2019, 25, 504-521.	9.5	37
8	Carbon dioxide stimulates lake primary production. Scientific Reports, 2018, 8, 10878.	3.3	26
9	Effects of Terrestrial Organic Matter on Aquatic Primary Production as Mediated by Pelagic–Benthic Resource Fluxes. Ecosystems, 2018, 21, 1255-1268.	3.4	23
10	Lake morphometry moderates the relationship between water color and fish biomass in small boreal lakes. Limnology and Oceanography, 2018, 63, 2171-2178.	3.1	15
11	Brownification increases winter mortality in fish. Oecologia, 2017, 183, 587-595.	2.0	20
12	Asymmetrical competition between aquatic primary producers in a warmer and browner world. Ecology, 2016, 97, 2580-2592.	3.2	39
13	A test for withinâ€lake niche differentiation in the nineâ€spined sticklebacks (<i>Pungitius pungitius</i>). Ecology and Evolution, 2016, 6, 4753-4760.	1.9	1
14	Climate change will alter amphibianâ€mediated nutrient pathways: evidence from <i>Rana temporaria</i> tadpoles in experimental ponds. Freshwater Biology, 2016, 61, 472-485.	2.4	16
15	Importance of coastal primary production in the northern Baltic Sea. Ambio, 2016, 45, 635-648.	5.5	31
16	Do warming and humic river runoff alter the metabolic balance of lake ecosystems?. Aquatic Sciences, 2016, 78, 717-725.	1.5	13
17	Declining coastal piscivore populations in the Baltic Sea: Where and when do sticklebacks matter?. Ambio, 2015, 44, 462-471.	5.5	51
18	Terrestrial organic matter input suppresses biomass production in lake ecosystems. Ecology, 2015, 96, 2870-2876.	3.2	94

PÃ**¤** Byström

#	Article	IF	CITATIONS
19	Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshwater Biology, 2015, 60, 78-88.	2.4	58
20	Preference for Cannibalism and Ontogenetic Constraints in Competitive Ability of Piscivorous Top Predators. PLoS ONE, 2013, 8, e70404.	2.5	19
21	Terrestrial organic matter support of lake food webs: Evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnology and Oceanography, 2012, 57, 1042-1048.	3.1	134
22	Ontogenetic constraints and diet shifts in Perch (<i>Perca fluviatilis</i>): mechanisms and consequences for intraâ€cohort cannibalism. Freshwater Biology, 2012, 57, 847-857.	2.4	15
23	Effetcs of ontogenetic scaling on resource exploitation and cohort size distributions. Oikos, 2010, 119, 384-392.	2.7	4
24	Growing through predation windows: effects on body size development in young fish. Oikos, 2010, 119, 1796-1804.	2.7	7
25	Size at hatching determines population dynamics and response to harvesting in cannibalistic fish. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 401-416.	1.4	18
26	Light limitation of nutrient-poor lake ecosystems. Nature, 2009, 460, 506-509.	27.8	623
27	Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes. Ecology, 2009, 90, 1923-1932.	3.2	110
28	Terrestrial organic matter and light penetration: Effects on bacterial and primary production in lakes. Limnology and Oceanography, 2009, 54, 2034-2040.	3.1	195
29	Resource heterogeneity, diet shifts and intra-cohort competition: effects on size divergence in YOY fish. Oecologia, 2008, 158, 249-257.	2.0	67
30	Influence of growth history on the accumulation of energy reserves and winter mortality in young fish. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2149-2156.	1.4	45
31	Stabilization of Population Fluctuations due to Cannibalism Promotes Resource Polymorphism in Fish. American Naturalist, 2007, 169, 820-829.	2.1	36
32	Substitution of top predators: effects of pike invasion in a subarctic lake. Freshwater Biology, 2007, 52, 1271-1280.	2.4	70
33	State-dependent invasion windows for prey in size-structured predator?prey systems: whole lake experiments. Journal of Animal Ecology, 2007, 76, 94-104.	2.8	32
34	The origin and development of individual size variation in early pelagic stages of fish. Oecologia, 2007, 153, 57-67.	2.0	36
35	Size and temperature dependent foraging capacities and metabolism: consequences for winter starvation mortality in fish. Oikos, 2006, 115, 43-52.	2.7	110
36	Recruitment pulses induce cannibalistic giants in Arctic char. Journal of Animal Ecology, 2006, 75, 434-444.	2.8	30

PÃ**¤** Byström

#	Article	IF	CITATIONS
37	Littoral energy mobilization dominates energy supply for top consumers in subarctic lakes. Limnology and Oceanography, 2005, 50, 538-543.	3.1	109

38 Size-dependent foraging capacities and intercohort competition in an ontogenetic omnivore (Arctic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

39	Plastic resource polymorphism: effects of resource availability on Arctic char (Salvelinus alpinus) morphology. Biological Journal of the Linnean Society, 2005, 85, 341-351.	1.6	24
40	Size-dependent resource limitation and foraging-predation risk trade-offs: growth and habitat use in young arctic char. Oikos, 2004, 104, 109-121.	2.7	57
41	Trophic dynamics in a whole lake experiment: size-structured interactions and recruitment variation. Oikos, 2004, 106, 263-274.	2.7	21
42	CANNIBALISM IN A SIZE-STRUCTURED POPULATION: ENERGY EXTRACTION AND CONTROL. Ecological Monographs, 2004, 74, 135-157.	5.4	80
43	Size- and density-dependent habitat use in predators: consequences for habitat shifts in young fish. Journal of Animal Ecology, 2003, 72, 156-168.	2.8	72
44	Gigantic cannibals driving a whole-lake trophic cascade. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4035-4039.	7.1	156
45	Diet-dependent body morphology and ontogenetic reaction norms in Eurasian perch. Oikos, 2001, 95, 311-323.	2.7	83
46	CANNIBALISM AND COMPETITION IN EURASIAN PERCH: POPULATION DYNAMICS OF AN ONTOGENETIC OMNIVORE. Ecology, 2000, 81, 1058-1071.	3.2	171
47	Interactions among Size-Structured Populations in a Whole-Lake Experiment: Size- and Scale-Dependent Processes. Oikos, 1999, 87, 139.	2.7	46
48	Size-dependent predation in piscivores: interactions between predator foraging and prey avoidance abilities. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 1285-1292.	1.4	205
49	Density Dependent Growth and Size Specific Competitive Interactions in Young Fish. Oikos, 1999, 86, 217.	2.7	115
50	COMPETING PREDATORS AND PREY: JUVENILE BOTTLENECKS IN WHOLE-LAKE EXPERIMENTS. Ecology, 1998, 79, 2153-2167.	3.2	105
51	Competing Predators and Prey: Juvenile Bottlenecks in Whole-Lake Experiments. Ecology, 1998, 79, 2153.	3.2	40