
Yuxing Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11653454/publications.pdf Version: 2024-02-01

Υπλινς 2μοπ

#	Article	IF	CITATIONS
1	Unraveling Crystallization Mechanisms and Electronic Structure of Phaseâ€Change Materials by Largeâ€Scale Ab Initio Simulations. Advanced Materials, 2022, 34, e2109139.	21.0	21
2	Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects. Nano Energy, 2021, 79, 105484.	16.0	32
3	Change in Structure of Amorphous Sb–Te Phaseâ€Change Materials as a Function of Stoichiometry. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100064.	2.4	10
4	Bonding nature and optical contrast of TiTe2/Sb2Te3 phase-change heterostructure. Materials Science in Semiconductor Processing, 2021, 135, 106080.	4.0	13
5	Materials Screening for Disorderâ€Controlled Chalcogenide Crystals for Phaseâ€Change Memory Applications. Advanced Materials, 2021, 33, e2006221.	21.0	32
6	Chemical understanding of resistance drift suppression in Ge–Sn–Te phase-change memory materials. Journal of Materials Chemistry C, 2020, 8, 71-77.	5.5	36
7	Bonding similarities and differences between Y–Sb–Te and Sc–Sb–Te phase-change memory materials. Journal of Materials Chemistry C, 2020, 8, 3646-3654.	5.5	28
8	Phase-change heterostructure enables ultralow noise and drift for memory operation. Science, 2019, 366, 210-215.	12.6	261
9	Chemical Design Principles for Cache-Type Sc–Sb–Te Phase-Change Memory Materials. Chemistry of Materials, 2019, 31, 4008-4015.	6.7	44
10	Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science, 2017, 358, 1423-1427.	12.6	458