Tapan K Ghanty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1165322/publications.pdf

Version: 2024-02-01

		159585	214800
137	3,161	30	47
papers	citations	h-index	g-index
138	138	138	2723
130	130	130	2723
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Density Functional Approach to Hardness, Polarizability, and Valency of Molecules in Chemical Reactions. The Journal of Physical Chemistry, 1996, 100, 12295-12298.	2.9	180
2	Is the Hydrogen Bond in Water Dimer and Ice Covalent?. Journal of the American Chemical Society, 2000, 122, 1210-1214.	13.7	174
3	Ultrafast Intermolecular Hydrogen Bond Dynamics in the Excited State of Fluorenone. Journal of Physical Chemistry A, 2005, 109, 8693-8704.	2.5	100
4	Relationship between Ionization Potential, Polarizability, and Softness:  A Case Study of Lithium and Sodium Metal Clusters. Journal of Physical Chemistry A, 2004, 108, 6661-6666.	2.5	92
5	Spin-Polarized Generalization of the Concepts of Electronegativity and Hardness and the Description of Chemical Binding. Journal of the American Chemical Society, 1994, 116, 3943-3948.	13.7	89
6	How strong is the interaction between a noble gas atom and a noble metal atom in the insertion compounds MNgF (M=Cu and Ag, and Ng=Ar, Kr, and Xe)?. Journal of Chemical Physics, 2006, 124, 124304.	3.0	77
7	Insertion of noble-gas atom (Kr and Xe) into noble-metal molecules (AuF and AuOH): Are they stable?. Journal of Chemical Physics, 2005, 123, 074323.	3.0	74
8	Structures and the Electronic Properties of Au ₁₉ X Clusters (X = Li, Na, K, Rb, Cs, Cu, and) Tj ETQq0	0	Overlock 10 T
9	Actinide selectivity of 1,10-phenanthroline-2,9-dicarboxamide and its derivatives: a theoretical prediction followed by experimental validation. Dalton Transactions, 2015, 44, 1332-1340.	3.3	60
10	Static dipole polarizability and binding energy of sodium clusters Nan (n=1–10): A critical assessment of all-electron based post Hartree–Fock and density functional methods. Journal of Chemical Physics, 2004, 120, 6487-6494.	3.0	58
11	Complexation behavior of trivalent actinides and lanthanides with 1,10-phenanthroline-2,9-dicarboxylic acid based ligands: insight from density functional theory. Physical Chemistry Chemical Physics, 2012, 14, 11060.	2.8	57
12	Hydrogen Bonding in Substituted Formic Acid Dimers. Journal of Physical Chemistry A, 2006, 110, 12623-12628.	2.5	48
13	Steric Strain Release-Directed Regioselective Functionalization of <i>meso</i> -Methyl Bodipy Dyes. Organic Letters, 2011, 13, 5870-5873.	4.6	45
14	Theoretical Prediction of Noble Gas Inserted Thioformyl Cations: HNgCS ⁺ (Ng = He, Ne, Ar,) Tj ETQq	₁ 0 <u>9 9</u> rgBT	「/Qyerlock 10
15	Hardness and Polarizability Profiles for Intramolecular Proton Transfer in Water Dimer Radical Cation. Journal of Physical Chemistry A, 2002, 106, 4200-4204.	2.5	44
16	Electron Density and Energy Decomposition Analysis in Hydrogen-Bonded Complexes of Azabenzenes with Water, Acetamide, and Thioacetamide. Journal of Physical Chemistry A, 2005, 109, 7575-7582.	2.5	44
17	Polarizability of water clusters: Anab initioinvestigation. Journal of Chemical Physics, 2003, 118, 8547-8550.	3.0	42
18	Rational Design of Boradiazaindacene (BODIPY)â€Based Functional Molecules. Chemistry - A European Journal, 2013, 19, 17766-17772.	3.3	41

#	Article	IF	CITATIONS
19	Electron spin resonance studies of 45Sc17O, 89Y17O, and 139La17O in rare gas matrices: Comparison with ab initio electronic structure and nuclear hyperfine calculations. Journal of Chemical Physics, 1999, 110, 5658-5669.	3.0	40
20	Diglycolamide-functionalized task specific ionic liquids for nuclear waste remediation: extraction, luminescence, theoretical and EPR investigations. RSC Advances, 2014, 4, 46613-46623.	3.6	40
21	Twisting Dynamics in the Excited Singlet State of Michler's Ketone. Journal of Physical Chemistry A, 2006, 110, 3432-3446.	2.5	38
22	Prediction of a New Series of Thermodynamically Stable Actinide Encapsulated Fullerene Systems Fulfilling the 32-Electron Principle. Journal of Physical Chemistry C, 2012, 116, 25630-25641.	3.1	37
23	Theoretical Prediction of Rare Gas Containing Hydride Cations: HRgBF ⁺ (Rg = He, Ar, Kr,) Tj ETQq1 1	0,784314 2.5	rgBT /Over
24	Theoretical Interpretation of the Photoelectron Spectra of Al3O2-and Al3O3 Journal of Physical Chemistry A, 1999, 103, 8985-8993.	2.5	35
25	Ab Initio CASSCF and DFT Investigations of (H2O)2+ and (H2S)2+:  Hemi-Bonded vs Proton-Transferred Structure. Journal of Physical Chemistry A, 2002, 106, 11815-11821.	2.5	34
26	Significant increase in the stability of rare gas hydrides on insertion of beryllium atom. Journal of Chemical Physics, 2007, 127, 114314.	3.0	34
27	Computational Modeling of Adsorption of Xe and Kr in M-MOF-74 Metal Organic Frame Works with Different Metal Atoms. Journal of Physical Chemistry C, 2016, 120, 10968-10974.	3.1	34
28	Electronegativity, hardness, and chemical binding in simple molecular systems. Inorganic Chemistry, 1992, 31, 1951-1955.	4.0	33
29	Heterocycle-Based Isomeric Chromophores with Substantially Varying NLO Properties: A New Structureâ^Property Correlation Study. Journal of Physical Chemistry A, 2008, 112, 4844-4852.	2.5	33
30	Theoretical Prediction of XRgCO $\langle \sup \rangle + \langle \sup \rangle$ lons (X = F, Cl, and Rg = Ar, Kr, Xe). Journal of Physical Chemistry A, 2013, 117, 14282-14292.	2.5	31
31	Theoretical investigation of electronic structure and ESR hyperfine parameters for the CuH+ molecule. International Journal of Quantum Chemistry, 2000, 77, 291-300.	2.0	30
32	Reactions of Methyl Viologen Dication (MV2+) with H Atoms in Aqueous Solution:  Mechanism Derived from Pulse Radiolysis Measurements and ab Initio MO Calculations. Journal of Physical Chemistry A, 2003, 107, 5998-6006.	2.5	30
33	Theoretical Prediction of Icosahedral U@C ₂₀ and Analogous Systems with High HOMO–LUMO Gap. Journal of Physical Chemistry C, 2012, 116, 16716-16725.	3.1	30
34	Diorgano-Gallium and -Indium Complexes Derived from Benzoazole Ligands: Synthesis, Characterization, Photoluminescence, and Computational Studies. Organometallics, 2013, 32, 104-111.	2.3	30
35	Structural and Chemical Properties of Subnanometer-Sized Bimetallic Au ₁₉ Pt Cluster. Journal of Physical Chemistry C, 2014, 118, 11935-11945.	3.1	30
36	Electronic Structure and Low-Lying Electronic States of Al3O and Al3O-:  Photoelectron Spectrum of Al3O Journal of Physical Chemistry A, 1999, 103, 2867-2872.	2.5	28

3

#	Article	IF	Citations
37	Uncovering Heavy Actinide Covalency: Implications for Minor Actinide Partitioning. Inorganic Chemistry, 2019, 58, 3744-3753.	4.0	28
38	Molecular Hardness, Polarizability and Valency Variation of Formamide and Thioformamide on Internal Rotation:  A Density Functional Study. Journal of Physical Chemistry A, 2000, 104, 2975-2979.	2.5	27
39	Complexation of trivalent lanthanides and actinides with several novel diglycolamide-functionalized calix[4]arenes: solvent extraction, luminescence and theoretical studies. RSC Advances, 2013, 3, 9296.	3.6	27
40	Highly selective separations of U(VI) from a Th(IV) matrix by branched butyl phosphates: Insights from solvent extraction, chromatography and quantum chemical calculations. Separation and Purification Technology, 2019, 210, 182-194.	7.9	27
41	Pu@C ₂₄ : A New Example Satisfying the 32-Electron Principle. Journal of Physical Chemistry C, 2014, 118, 7211-7221.	3.1	26
42	The Role of Hydrogenâ€Bonding Interactions in the Ultrafast Relaxation Dynamics of the Excited States of 3―and 4â€Aminofluorenâ€9â€ones. ChemPhysChem, 2009, 10, 2995-3012.	2.1	25
43	Synthesis, Characterization, Photoluminescence, and Computational Studies of Monoorgano-Gallium and Indium Complexes Containing Dianionic Tridentate ONE (E = O or S) Schiff Bases. Organometallics, 2012, 31, 3836-3843.	2.3	25
44	Effect of Hydrogen Atom Doping on the Structure and Electronic Properties of 20-Atom Gold Cluster. Journal of Physical Chemistry C, 2016, 120, 18588-18594.	3.1	25
45	Adsorption and Activation of CO ₂ on Small-Sized Cu–Zr Bimetallic Clusters. Journal of Physical Chemistry A, 2021, 125, 2558-2572.	2.5	25
46	Nonlinear Optical Properties of Au $<$ sub $>$ 19 $<$ /sub $>$ M (M = Li, Na, K, Rb, Cs, Cu, Ag) Clusters. Journal of Physical Chemistry C, 2012, 116, 193-200.	3.1	24
47	Enhancement in the Stability of 36-Atom Fullerene through Encapsulation of a Uranium Atom. Journal of Physical Chemistry C, 2013, 117, 17859-17869.	3.1	24
48	Magic clusters MAu4 (M=Ti and Zr) and their dimers: How magic are they?. Journal of Chemical Physics, 2004, 120, 11363-11366.	3.0	23
49	Time-dependent density functional theory calculation of van der Waals coefficient of sodium clusters. Journal of Chemical Physics, 2007, 127, 134103.	3.0	23
50	Ab Initio Studies of Properties of Small Potassium Clusters. Journal of Physical Chemistry A, 2008, 112, 12303-12311.	2.5	23
51	Gold behaves as hydrogen: Prediction on the existence of a new class of boron-containing radicals, AuBX (X=F,Cl,Br). Journal of Chemical Physics, 2005, 123, 241101.	3.0	22
52	Structural Investigation of Asymmetrical Dimer Radical Cation System (H2Oâ^'H2S)+: Proton-Transferred or Hemi-Bonded?. Journal of Physical Chemistry A, 2007, 111, 2362-2367.	2.5	22
53	Significant modulation of CO adsorption on bimetallic Au19Li cluster. Chemical Physics, 2014, 428, 75-81.	1.9	22
54	Noble-Gas-Inserted Fluoro(sulphido)boron (FNgBS, Ng = Ar, Kr, and Xe): A Theoretical Prediction. Journal of Physical Chemistry A, 2015, 119, 5732-5741.	2.5	22

#	Article	IF	CITATIONS
55	Ab initio studies on the polarizability of lithium clusters: Some unusual results. International Journal of Quantum Chemistry, 2005, 105, 166-173.	2.0	21
56	A sum-over-state scheme of analysis of hyperpolarizabilities and its application to spiroconjugated molecular system. Theoretical Chemistry Accounts, 2010, 126, 323-337.	1.4	21
57	Polarizability, Ionization Potential, and Softness of Water and Methanol Clusters: An Interrelation. Journal of Physical Chemistry A, 2012, 116, 6831-6836.	2.5	21
58	Theoretical prediction of rare gas inserted hydronium ions: HRgOH2+. Journal of Chemical Physics, 2013, 138, 194308.	3.0	21
59	Prediction of neutral noble gas insertion compounds with heavier pnictides: FNgY (Ng = Kr and Xe; Y =) Tj ETQq1 1	. 0.784314	4_rgBT /Ove
60	Hydrogen-Bonding Interactions in Selected Super-molecular Systems:  Electron Density Point of View. Journal of Physical Chemistry A, 2003, 107, 7062-7067.	2.5	20
61	Theoretical Study of the Effect of Structural Modifications on the Hyperpolarizabilities of Indigo Derivatives. Journal of Physical Chemistry A, 2009, 113, 2623-2631.	2.5	19
62	Confinement-Directed Adsorption of Noble Gases (Xe/Kr) in MFM-300(M)-Based Metal–Organic Framework Materials. Journal of Physical Chemistry C, 2019, 123, 27531-27541.	3.1	19
63	A peculiar excited electronic state of allene (1,2-propadiene). Chemical Physics Letters, 1998, 287, 61-69.	2.6	18
64	Unprecedented Enhancement of Noble Gas–Noble Metal Bonding in NgAu ₃ ⁺ (Ng = Ar, Kr, and Xe) Ion through Hydrogen Doping. Journal of Physical Chemistry A, 2016, 120, 9998-10006.	2.5	18
65	Hydrogen Bonding in Neutral and Cation Dimers of H ₂ Se with H ₂ O, H ₂ S, and H ₂ Se. Journal of Physical Chemistry A, 2012, 116, 11965-11972.	2.5	17
66	Density functional investigation on the structures and properties of Li atom doped Au ₂₀ cluster. Molecular Physics, 2013, 111, 725-734.	1.7	16
67	Structure and Stability of Zn, Cd, and Hg Atom Doped Golden Fullerene (Au ₃₂). Journal of Physical Chemistry C, 2013, 117, 18777-18788.	3.1	16
68	Prediction of a Neutral Noble Gas Compound in the Triplet State. Chemistry - A European Journal, 2015, 21, 8290-8296.	3.3	16
69	Noble Gas Encapsulated Endohedral Zintl Ions Ng@Pb ₁₂ ^{2â€"} and Ng@Sn ₁₂ ^{2â€"} (Ng = He, Ne, Ar, and Kr): A Theoretical Investigation. Journal of Physical Chemistry C, 2017, 121, 11932-11949.	3.1	16
70	Experimental evidence and quantum chemical insights into extraction and third phase aggregation trends in Ce(IV) organophosphates. Separation and Purification Technology, 2019, 217, 62-70.	7.9	16
71	Proton Affinity and Acidity of Hypohalous Acids:Â A Density Functional Study. Journal of Physical Chemistry A, 1997, 101, 5022-5025.	2.5	15
72	Electronic structure and thermophysical properties of U3Si2: A systematic first principle study. Journal of Nuclear Materials, 2018, 510, 360-365.	2.7	15

#	Article	IF	Citations
73	Quantum chemical prediction of a superelectrophilic dianion and its binding with noble gas atoms. Chemical Communications, 2019, 55, 14379-14382.	4.1	15
74	Excited state polarizabilities of methanol clusters. Physical Chemistry Chemical Physics, 2010, 12, 2929.	2.8	14
75	Noble Gas Inserted Protonated Silicon Monoxide Cations: HNgOSi ⁺ (Ng = He, Ne, Ar, Kr,) Tj ETQq1	1 0,78431 2.5	4 rgBT /Over
76	Adsorption properties of fission gases Xe and Kr on pristine and doped graphene: A first principle DFT study. Journal of Nuclear Materials, 2017, 490, 174-180.	2.7	14
77	<i>Ab Initio</i> Study of Adsorption of Fission Gas Atoms Xe and Kr on MoS ₂ Monolayer Functionalized with 3d Transition Metals. Journal of Physical Chemistry C, 2021, 125, 1493-1508.	3.1	14
78	Ionized State of Hydroperoxy Radicalâ^'Water Hydrogen-Bonded Complex:  (HO2â^'H2O)+. Journal of Physical Chemistry A, 2007, 111, 13590-13594.	2.5	13
79	Synthesis, characterization, photoluminescence and computational studies of mono- and diorgano-gallium complexes containing azo linked salicylaldimine Schiff bases. Journal of Organometallic Chemistry, 2015, 776, 98-106.	1.8	13
80	Theoretical prediction of noble gas inserted halocarbenes: FNgCX (Ng = Kr, and Xe; $X = F$, Cl, Br, and I). Chemical Physics, 2017, 494, 20-30.	1.9	13
81	A new electronegativity based approach to the calculation of partial atomic charges and other related reactivity indices in molecules. Computational and Theoretical Chemistry, 1992, 276, 83-96.	1.5	12
82	Formation of semiquinone radical in the reaction of embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) with reductants as well as oxidants. Characterization by pulse radiolysis and structure investigation by quantum chemical study. Journal of Molecular Structure, 2009, 928, 46-53.	3.6	12
83	Structure and solvent-induced tuning of laser property and photostability of a boradiazaindacene (BODIPY) dye. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 349, 162-170.	3.9	12
84	Remarkable structural effects on the complexation of actinides with H-phosphonates: a combined experimental and quantum chemical study. Dalton Transactions, 2018, 47, 3841-3850.	3.3	12
85	Unprecedented stability enhancement of multiply charged anions through decoration with negative electron affinity noble gases. Physical Chemistry Chemical Physics, 2020, 22, 13368-13372.	2.8	12
86	Fluorescent Cu2+ sensor based on phenanthroline-BODIPY conjugate: A mechanistic study. Dyes and Pigments, 2022, 203, 110343.	3.7	12
87	Noble gas hydrides in the triplet state: HNgCCO ⁺ (Ng = He, Ne, Ar, Kr, and Xe). Physical Chemistry Chemical Physics, 2018, 20, 20270-20279.	2.8	11
88	Adsorption and activation of CO $<$ sub $>$ 2 $<$ /sub $>$ on Zr $<$ sub $>$ n $<$ /sub $>$ ($<$ i $>$ n $<$ /i $>$ = 2â \in "7) clusters. Physical Chemistry Chemical Physics, 2020, 22, 16877-16886.	2.8	11
89	Hydration of uranyl cations: Effective fragment potential approach. Computational and Theoretical Chemistry, 2007, 807, 93-99.	1.5	10
90	Interesting periodic variations in physical and chemical properties of homonuclear diatomic molecules. International Journal of Quantum Chemistry, 2012, 112, 1097-1106.	2.0	10

#	Article	IF	CITATIONS
91	Does enhanced oxygen activation always facilitate <scp>CO</scp> oxidation on gold clusters?. Journal of Computational Chemistry, 2015, 36, 2177-2187.	3.3	10
92	An Insight into the Complexation of Trivalent Americium Visâ€Ãâ€Vis Lanthanides with Bis(1,2,4â€triazinyl)bipyridine Derivatives. European Journal of Inorganic Chemistry, 2017, 2017, 820-828.	2.0	10
93	Role of metcar on the adsorption and activation of carbon dioxide: a DFT study. Physical Chemistry Chemical Physics, 2021, 23, 5559-5570.	2.8	10
94	A new simple approach to the polarizability of atoms and ions using frontier orbitals from the Kohn-Sham density functional theory. Computational and Theoretical Chemistry, 1996, 366, 139-144.	1.5	9
95	Silicene: A Promising Surface to Achieve Morphological Transformation in Gold Clusters. Journal of Physical Chemistry C, 2015, 119, 3192-3198.	3.1	9
96	Substituent effect on ionization potential, O–H bond dissociation energy and intra-molecular hydrogen bonding in salicylic acid derivatives. Computational and Theoretical Chemistry, 2010, 948, 47-54.	1.5	8
97	Hydrogenâ€bonded complexes of nicotine with simple alcohols. International Journal of Quantum Chemistry, 2012, 112, 2787-2793.	2.0	8
98	Theoretical investigation of M@Pb ₁₂ ^{2â^'} and M@Sn ₁₂ ^{2â^'} Zintl clusters (M = Lr ⁿ⁺ , Lu ⁿ⁺ ,) Tj ETQq0 0 0	rgBT /Ovei	lock 10 Tf 50
99	20, 15253-15272. Remarkable Structural Effect on the Gold–Hydrogen Analogy in Hydrogen-Doped Gold Cluster. Journal of Physical Chemistry A, 2019, 123, 1973-1982.	2.5	8
100	Reactions and structural investigation of chlorpromazine radical cation. Journal of Molecular Structure, 2008, 888, 401-408.	3.6	7
101	Atom- and Ion-Centered Icosahedral Shaped Subnanometer-Sized Clusters of Molecular Hydrogen. Journal of Physical Chemistry C, 2017, 121, 15036-15048.	3.1	7
102	Hybrid Organic–Inorganic Functionalized Dodecaboranes and Their Potential Role in Lithium and Magnesium Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 27947-27954.	3.1	7
103	Structureâ€Modulated Complexation of Actinides with Phosphonates: A Combined Experimental and Quantum Chemical Investigation. ChemistrySelect, 2018, 3, 11309-11315.	1.5	7
104	On the position of La, Lu, Ac and Lr in the periodic table: a perspective. Journal of Chemical Sciences, 2019, 131, 1.	1.5	7
105	The effect of doping on adsorption of Xe and Kr on graphyne and graphdiyne. Materials Today Communications, 2020, 22, 100738.	1.9	7
106	Dopant-Free, Blue-Light-Emitting, Hydrophobic Deep Eutectic Solvent and Its Application as a Liquid Scintillator. ACS Applied Electronic Materials, 2022, 4, 2175-2179.	4.3	7
107	Density functional study of the relationship between energy, hardness, and polarizability of molecules in nonequilibrium situations. International Journal of Quantum Chemistry, 1997, 63, 917-926.	2.0	6
108	Predicted M(H2)12n+ (M = Ac, Th, Pa, U, La and n = 3, 4) complexes with twenty-four hydrogen atoms bound to the metal ion. Chemical Communications, 2019, 55, 7788-7791.	4.1	6

#	Article	IF	Citations
109	Strong influence of weak hydrogen bonding on actinide–phosphonate complexation: accurate predictions from DFT followed by experimental validation. Physical Chemistry Chemical Physics, 2019, 21, 5566-5577.	2.8	6
110	Anomaly in the stability of the hydroxides of icosagens (B and Al) and their noble gas (Xe and Rn) derivatives: a comparative study. Physical Chemistry Chemical Physics, 2020, 22, 14109-14124.	2.8	6
111	Timeâ€dependent density functional theory calculation of van der Waals coefficient of potassium clusters. International Journal of Quantum Chemistry, 2009, 109, 1376-1384.	2.0	5
112	Hydrogen bonding interaction between HO2 radical and selected organic acids, RCOOH (R=CH3, H, Cl) Tj ETQqC	0 0 rgBT 2.6	/Oyerlock 10
113	Synthesis and Characterization of Some BODIPYâ€based Substituted Salicylaldimine Schiff Bases. Journal of Heterocyclic Chemistry, 2019, 56, 2499-2507.	2.6	5
114	Lanthanide and actinide doped B12H122â^' and Al12H122â^' clusters: new magnetic superatoms with f-block elements. Physical Chemistry Chemical Physics, 2019, 21, 23720-23732.	2.8	5
115	Adsorption control of Xe and Kr in SBMOF-2 metal-organic framework by ligand functionalization and different metal atoms. Computational Materials Science, 2021, 189, 110264.	3.0	5
116	Exploration of N-oxo pyridine 2-carboxamide ligands towards coordination chemistry, solvent extraction, and DFT investigation for the development of novel solvent for lanthanide and actinide separation. Polyhedron, 2021, 201, 115166.	2.2	5
117	Strain Engineering of 2D-C ₃ N ₅ Monolayer and Its Application in Overall Water-Splitting: a Hybrid Density Functional Study. Journal of Physical Chemistry C, 2022, 126, 8436-8449.	3.1	5
118	Structure of thiocyanate dimer radical anion: An ab initio study. Computational and Theoretical Chemistry, 2005, 723, 235-239.	1.5	4
119	Theoretical prediction of FNgM3–kHk (Ng = Ar, Kr, Xe, and Rn; M = Cu, Ag and Au; k =â Molecular Physics, O, , .	€‰0–2 1.7) molecules.
120	Stability-Order Reversal in FSiY and FYSi ($Y = N$ and P) Molecules after the Insertion of a Noble Gas Atom. Journal of Physical Chemistry A, 2022, 126, 1132-1143.	2.5	4
121	Reassignment of the AlSi— photoelectron spectrum by ab initio configuration interaction calculations. Molecular Physics, 1999, 96, 735-740.	1.7	3
122	Hydrogen bonding interaction in complexes of hydronium ion with selective chemical species. Chemical Physics Letters, 2009, 471, 36-40.	2.6	3
123	Structural diversity ranging from cyclic trimeric, tetrameric, hexameric to 1-D helix in dimethylgallium hydroxide. Journal of Organometallic Chemistry, 2015, 781, 65-71.	1.8	3
124	Exploring the electronic structure and thermal properties of UAI3 using density functional theory calculations. Journal of Physics and Chemistry of Solids, 2020, 136, 109179.	4.0	3
125	Reassignment of the AlSi- photoelectron spectrum by ab initio configuration interaction calculations. Molecular Physics, 1999, 96, 735-740.	1.7	3
126	Ab initio calculations on XFnq (X = I, Xe, Cs, and Ba;n=1, 2, 4, and 6;q=?1, 0, $+1$, and $+2$) molecules. International Journal of Quantum Chemistry, 2001, 81, 238-245.	2.0	2

#	Article	IF	CITATIONS
127	Prediction of a Nineâ^'Membered Aromatic Heterocyclic 1,4,7â^'triazacyclononatetraenyl anion and its Sandwich Complexes with Divalent Lanthanides. ChemistrySelect, 2019, 4, 9940-9946.	1.5	2
128	A combined experimental and quantum chemical studies on the structure and binding preferences of picolinamide based ligands with uranyl nitrate. Polyhedron, 2019, 171, 486-492.	2.2	2
129	Adsorption and activation of CO2 molecule on subnanometer-sized anionic vanadium carbide clusters V C4 \hat{a} ° (n = $1\hat{a}$ €"6): A theoretical study. Molecular Catalysis, 2021, 515, 111871.	2.0	2
130	Electronegativity-based approach to a new potential energy function for bond extensions. Computational and Theoretical Chemistry, 1994, 309, 143-149.	1.5	1
131	Structure and binding energies of halogenated hydroxymethoxy radical–water hydrogen-bonded complexes: HOC(X)(Y)O·nH2O (n=0, 1, 2 and X, Y=H/F/Cl). Computational and Theoretical Chemistry, 2012, 992, 30-36.	2.5	1
132	A first-principles study of the effect of oxygen vacancy on rutile Tilâ^'xCdxO2. Solid State Communications, 2012, 152, 142-146.	1.9	1
133	Synthesis, Characterization, Photophysical and DFT Studies of Coumarin Schiff Bases and Their Dimethylgallium Complexes. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2016, 86, 633-644.	1.2	1
134	Counter-Intuitive Stability in Actinide-Encapsulated Metalloid Clusters with Broken Aromaticity. Journal of Physical Chemistry C, 2018, 122, 22469-22479.	3.1	1
135	The Decisive Role of Spin States and Spin Coupling in Dictating Selective O ₂ Adsorption in Chromium(II) Metal–Organic Frameworks. Chemistry - A European Journal, 2022, 28, e202200661.	3.3	1
136	THEORETICAL STUDIES ON POLARIZABILITY OF ALKALI METAL CLUSTERS. , 2006, , 625-655.		0
137	Time-Dependent Density Functional Theory Calculation of Van der Waals Coefficient of Metal Clusters. , 2009, , .		O