
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/116515/publications.pdf Version: 2024-02-01

ALAIN CHADRIT

#	Article	IF	CITATIONS
1	A Role for Taok2 in <i>Listeria monocytogenes</i> Vacuolar Escape. Journal of Infectious Diseases, 2022, 225, 1005-1010.	4.0	8
2	Lung-adapted <i>Staphylococcus aureus</i> isolates with dysfunctional agr system trigger a proinflammatory response. Journal of Infectious Diseases, 2022, , .	4.0	5
3	High-Resolution Typing of <i>Staphylococcus epidermidis</i> Based on Core Genome Multilocus Sequence Typing To Investigate the Hospital Spread of Multidrug-Resistant Clones. Journal of Clinical Microbiology, 2021, 59, .	3.9	4
4	Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the <i>Drosophila</i> Larval Model. MBio, 2021, 12, e0027621.	4.1	15
5	The pentose phosphate pathway constitutes a major metabolic hub in pathogenic Francisella. PLoS Pathogens, 2021, 17, e1009326.	4.7	16
6	BLIâ€MS: Combining biolayer interferometry and mass spectrometry. Proteomics, 2021, , 2100031.	2.2	3
7	Multitasking Actors of Staphylococcus aureus Metabolism and Virulence. Trends in Microbiology, 2020, 28, 6-9.	7.7	6
8	Which Current and Novel Diagnostic Avenues for Bacterial Respiratory Diseases?. Frontiers in Microbiology, 2020, 11, 616971.	3.5	10
9	Transketolase of Staphylococcus aureus in the Control of Master Regulators of Stress Response During Infection. Journal of Infectious Diseases, 2019, 220, 1967-1976.	4.0	12
10	Pivotal Role of Mitochondria in Macrophage Response to Bacterial Pathogens. Frontiers in Immunology, 2019, 10, 2461.	4.8	75
11	Francisella tularensis: Causative Agent of Tularemia and Biothreat Agent. , 2019, , 239-250.		1
12	Fulminant arterial vasculitis as an unusual complication of disseminated staphylococcal disease due to the emerging CC1 methicillin-susceptible Staphylococcus aureus clone: a case report. BMC Infectious Diseases, 2019, 19, 302.	2.9	3
13	Chronic Staphylococcus aureus Lung Infection Correlates With Proteogenomic and Metabolic Adaptations Leading to an Increased Intracellular Persistence. Clinical Infectious Diseases, 2019, 69, 1937-1945.	5.8	31
14	Critical Role of a Sheath Phosphorylation Site On the Assembly and Function of an Atypical Type VI Secretion System. Molecular and Cellular Proteomics, 2019, 18, 2418-2432.	3.8	8
15	Antibacterial Toxins: Gram-Positive Bacteria Strike Back!. Trends in Microbiology, 2018, 26, 89-91.	7.7	14
16	A splenic IgM memory subset with antibacterial specificities is sustained from persistent mucosal responses. Journal of Experimental Medicine, 2018, 215, 2035-2053.	8.5	30
17	The absence of N-acetylglucosamine in wall teichoic acids of Listeria monocytogenes modifies biofilm architecture and tolerance to rinsing and cleaning procedures. PLoS ONE, 2018, 13, e0190879.	2.5	25
18	The metabolic enzyme fructose-1,6-bisphosphate aldolase acts as a transcriptional regulator in pathogenic Francisella. Nature Communications, 2017, 8, 853.	12.8	111

#	Article	IF	CITATIONS
19	Intradermal Immunization with rAAV1 Vector Induces Robust Memory CD8+ T Cell Responses Independently of Transgene Expression in DCs. Molecular Therapy, 2017, 25, 2309-2322.	8.2	5
20	Role of Glycosylation/Deglycolysation Processes in Francisella tularensis Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 71.	3.9	8
21	Importance of Metabolic Adaptations in Francisella Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 96.	3.9	28
22	Intracellular Survival of Staphylococcus aureus in Endothelial Cells: A Matter of Growth or Persistence. Frontiers in Microbiology, 2017, 8, 1354.	3.5	90
23	A widespread family of polymorphic toxins encoded by temperate phages. BMC Biology, 2017, 15, 75.	3.8	33
24	Host glycosylation pathways and the unfolded protein response contribute to the infection byFrancisella. Cellular Microbiology, 2016, 18, 1763-1781.	2.1	14
25	Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia. Seminars in Cell and Developmental Biology, 2016, 60, 155-167.	5.0	37
26	Francisella tularensis IglG Belongs to a Novel Family of PAAR-Like T6SS Proteins and Harbors a Unique N-terminal Extension Required for Virulence. PLoS Pathogens, 2016, 12, e1005821.	4.7	41
27	Gluconeogenesis, an essential metabolic pathway for pathogenic <scp><i>F</i></scp> <i>rancisella</i> . Molecular Microbiology, 2015, 98, 518-534.	2.5	35
28	The complex amino acid diet of Francisella in infected macrophages. Frontiers in Cellular and Infection Microbiology, 2015, 5, 9.	3.9	23
29	Contribution of the multiple Type I signal peptidases to the secretome of Listeria monocytogenes: Deciphering their specificity for secreted exoproteins by exoproteomic analysis. Journal of Proteomics, 2015, 117, 95-105.	2.4	17
30	Importance of Host Cell Arginine Uptake in Francisella Phagosomal Escape and Ribosomal Protein Amounts*. Molecular and Cellular Proteomics, 2015, 14, 870-881.	3.8	24
31	A New Family of Secreted Toxins in Pathogenic Neisseria Species. PLoS Pathogens, 2015, 11, e1004592.	4.7	73
32	Importance of Branched-Chain Amino Acid Utilization in Francisella Intracellular Adaptation. Infection and Immunity, 2015, 83, 173-183.	2.2	39
33	Glutamate Utilization Couples Oxidative Stress Defense and the Tricarboxylic Acid Cycle in Francisella Phagosomal Escape. PLoS Pathogens, 2014, 10, e1003893.	4.7	49
34	Asparagine assimilation is critical for intracellular replication and dissemination of <i>Francisella</i> . Cellular Microbiology, 2014, 16, 434-449.	2.1	49
35	Changes in proteome of the <i>î"hfq</i> strain derived from <i>Francisella tularensis</i> LVS correspond with its attenuated phenotype. Proteomics, 2014, 14, 2400-2409.	2.2	6
36	Detection of the Interaction Between Host and Bacterial Proteins: Eukaryotic Nucleolin Interacts with Francisella Elongation Factor Tu. Methods in Molecular Biology, 2014, 1197, 123-139.	0.9	4

#	Article	IF	CITATIONS
37	Francisella tularensis intracellular survival: to eat or to die. Microbes and Infection, 2013, 15, 989-997.	1.9	21
38	Possible Links Between Stress Defense and the Tricarboxylic Acid (TCA) Cycle in Francisella Pathogenesis. Molecular and Cellular Proteomics, 2013, 12, 2278-2292.	3.8	26
39	Cognate Antigen Stimulation Generates Potent CD8+ Inflammatory Effector T Cells. Frontiers in Immunology, 2013, 4, 452.	4.8	7
40	Francisella tularensisregulates the expression of the amino acid transporter SLC1A5 in infected THP-1 human monocytes. Cellular Microbiology, 2012, 14, 1769-1783.	2.1	26
41	Mechanisms of iron and haem transport by <i>Listeria monocytogenes</i> . Molecular Membrane Biology, 2012, 29, 69-86.	2.0	27
42	Proteins involved in <i>Francisella tularensis</i> survival and replication inside macrophages. Future Microbiology, 2012, 7, 1255-1268.	2.0	7
43	A Putative P-Type ATPase Required for Virulence and Resistance to Haem Toxicity in Listeria monocytogenes. PLoS ONE, 2012, 7, e30928.	2.5	39
44	Identification of a Novel Small RNA Modulating Francisella tularensis Pathogenicity. PLoS ONE, 2012, 7, e41999.	2.5	17
45	Regulation of virulence in Francisella tularensis by small non-coding RNAs. Nature Precedings, 2011, , .	0.1	1
46	Sortase independent and dependent systems for acquisition of haem and haemoglobin in <i>Listeria monocytogenes</i> . Molecular Microbiology, 2011, 80, 1581-1597.	2.5	45
47	Identification of a Putative Chaperone Involved in Stress Resistance and Virulence in Francisella tularensis. Infection and Immunity, 2011, 79, 1428-1439.	2.2	35
48	Identification of small RNAs in Francisella tularensis. BMC Genomics, 2010, 11, 625.	2.8	26
49	Francisella Tularensis Metabolism and its Relation to Virulence. Frontiers in Microbiology, 2010, 1, 140.	3.5	70
50	Identification of trkH, Encoding a Potassium Uptake Protein Required for Francisella tularensis Systemic Dissemination in Mice. PLoS ONE, 2010, 5, e8966.	2.5	29
51	The unraveling panoply of Francisella tularensis virulence attributes. Current Opinion in Microbiology, 2010, 13, 11-17.	5.1	50
52	Nucleolin, a Shuttle Protein Promoting Infection of Human Monocytes by Francisella tularensis. PLoS ONE, 2010, 5, e14193.	2.5	18
53	Glutathione Provides a Source of Cysteine Essential for Intracellular Multiplication of Francisella tularensis. PLoS Pathogens, 2009, 5, e1000284.	4.7	121
54	lmo1273, a novel gene involved in Listeria monocytogenes virulence. Microbiology (United Kingdom), 2009, 155, 891-902.	1.8	6

#	Article	IF	CITATIONS
55	Pivotal role of the Francisella tularensis heat-shock sigma factor RpoH. Microbiology (United) Tj ETQq1 1 0.7843	14 rgBT /	Overlock 10 T
56	Hfq, a Novel Pleiotropic Regulator of Virulence-Associated Genes in <i>Francisella tularensis</i> . Infection and Immunity, 2009, 77, 1866-1880.	2.2	93
57	Loops and networks in control ofFrancisella tularensisvirulence. Future Microbiology, 2009, 4, 713-729.	2.0	21
58	Isolation of Plasmids. , 2009, , .		0
59	The heatâ€shock protein ClpB of <i>Francisella tularensis</i> is involved in stress tolerance and is required for multiplication in target organs of infected mice. Molecular Microbiology, 2008, 67, 1384-1401.	2.5	90
60	A novel receptor – ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu. BMC Microbiology, 2008, 8, 145.	3.3	82
61	Genetic Manipulations. , 2008, , 273-309.		0
62	CD8 single-cell gene coexpression reveals three different effector types present at distinct phases of the immune response. Journal of Experimental Medicine, 2007, 204, 1193-1205.	8.5	84
63	Role of the <i>wbt</i> Locus of <i>Francisella tularensis</i> in Lipopolysaccharide O-Antigen Biogenesis and Pathogenicity. Infection and Immunity, 2007, 75, 536-541.	2.2	94
64	ActA Is Required for Crossing of the Fetoplacental Barrier by Listeria monocytogenes. Infection and Immunity, 2007, 75, 950-957.	2.2	77
65	Interaction of Bacteriophage Lambda with Its Cell Surface Receptor:  An in Vitro Study of Binding of the Viral Tail Protein gpJ to LamB (Maltoporin). Biochemistry, 2006, 45, 2708-2720.	2.5	33
66	Listeriolysin O: a key protein ofListeria monocytogeneswith multiple functions. FEMS Microbiology Reviews, 2006, 30, 514-529.	8.6	102
67	lron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes. Molecular Microbiology, 2006, 59, 1185-1198.	2.5	74
68	A Homolog of Bacillus subtilis Trigger Factor in Listeria monocytogenes Is Involved in Stress Tolerance and Bacterial Virulence. Applied and Environmental Microbiology, 2006, 72, 6623-6631.	3.1	24
69	Exploring the role of the CTL epitope region of listeriolysin O in the pathogenesis of Listeria monocytogenes. Microbiology (United Kingdom), 2006, 152, 1287-1296.	1.8	6
70	Identification of an Essential Gene of Listeria monocytogenes Involved in Teichoic Acid Biogenesis. Journal of Bacteriology, 2006, 188, 6580-6591.	2.2	30
71	Lessons from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiology Reviews, 2005, 29, 703-717.	8.6	45
72	Regulation of expression of type I signal peptidases in Listeria monocytogenes. Microbiology (United) Tj ETQqO	0 0 rgBT /	Overlock 10 T

5

#	Article	IF	CITATIONS
73	Role of FliF and FliI of Listeria monocytogenes in Flagellar Assembly and Pathogenicity. Infection and Immunity, 2005, 73, 5530-5539.	2.2	71
74	Sortase B, a New Class of Sortase in Listeria monocytogenes. Journal of Bacteriology, 2004, 186, 1972-1982.	2.2	92
75	Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence in Listeria monocytogenes. Molecular Microbiology, 2004, 39, 1124-1139.	2.5	57
76	Differential roles of multiple signal peptidases in the virulence of Listeria monocytogenes. Molecular Microbiology, 2004, 51, 1251-1266.	2.5	56
77	The svpA-srtB locus of Listeria monocytogenes: Fur-mediated iron regulation and effect on virulence. Molecular Microbiology, 2004, 55, 927-940.	2.5	61
78	Identification of the agr Locus of Listeria monocytogenes : Role in Bacterial Virulence. Infection and Immunity, 2003, 71, 4463-4471.	2.2	150
79	Capacity of ivanolysin O to replace listeriolysin O in phagosomal escape and in vivo survival of Listeria monocytogenes. Microbiology (United Kingdom), 2003, 149, 611-620.	1.8	27
80	Identification of LpeA, a PsaA-Like Membrane Protein That Promotes Cell Entry by Listeria monocytogenes. Infection and Immunity, 2003, 71, 474-482.	2.2	47
81	Maturation of Lipoproteins by Type II Signal Peptidase Is Required for Phagosomal Escape of Listeria monocytogenes. Journal of Biological Chemistry, 2003, 278, 49469-49477.	3.4	68
82	Maltodextrin transport through LamB. Frontiers in Bioscience - Landmark, 2003, 8, s265-274.	3.0	27
83	Modification of the signal sequence cleavage site of listeriolysin O does not affect protein secretion but impairs the virulence of Listeria monocytogenes. Microbiology (United Kingdom), 2003, 149, 1249-1255.	1.8	10
84	pH-induced Collapse of the Extracellular Loops ClosesEscherichia coli Maltoporin and Allows the Study of Asymmetric Sugar Binding. Journal of Biological Chemistry, 2002, 277, 41318-41325.	3.4	36
85	The Sortase SrtA of Listeria monocytogenes Is Involved in Processing of Internalin and in Virulence. Infection and Immunity, 2002, 70, 1382-1390.	2.2	112
86	A hypermutator phenotype attenuates the virulence of Listeria monocytogenes in a mouse model. Molecular Microbiology, 2002, 44, 877-887.	2.5	38
87	Critical role of the N-terminal residues of listeriolysin O in phagosomal escape and virulence ofListeria monocytogenes. Molecular Microbiology, 2002, 46, 367-379.	2.5	37
88	Identification of New Genes Involved in the Virulence of Listeria monocytogenes by Signature-Tagged Transposon Mutagenesis. Infection and Immunity, 2001, 69, 2054-2065.	2.2	105
89	Functional assembly of two membrane-binding domains in listeriolysin O, the cytolysin of Listeria monocytogenes. Microbiology (United Kingdom), 2001, 147, 2679-2688.	1.8	14
90	In vivo and in vitro studies of transmembrane beta-strand deletion, insertion or substitution mutants of the Escherichia coli K-12 maltoporin. Molecular Microbiology, 2000, 35, 777-790.	2.5	17

#	Article	IF	CITATIONS
91	The C-Terminal Portion of the Tail Fiber Protein of Bacteriophage Lambda Is Responsible for Binding to LamB, Its Receptor at the Surface of Escherichia coli K-12. Journal of Bacteriology, 2000, 182, 508-512.	2.2	79
92	Listeriolysin O as a Reporter To Identify Constitutive and In Vivo-Inducible Promoters in the Pathogen Listeria monocytogenes. Infection and Immunity, 2000, 68, 3242-3250.	2.2	34
93	In vivo and in vitro studies of major surface loop deletion mutants of the Escherichia coli K-12 maltoporin: contribution to maltose and maltooligosaccharide transport and binding. Molecular Microbiology, 1999, 32, 851-867.	2.5	27
94	Immunogenicity of viral B-cell epitopes inserted into two surface loops of the Escherichia coli K12 LamB protein and expressed in an attenuated aroA strain of Salmonella typhimurium. Vaccine, 1999, 17, 1-12.	3.8	13
95	Function of the Duplicated IIB Domain and Oligomeric Structure of the Fructose Permease of Escherichia coli. Journal of Biological Chemistry, 1996, 271, 9997-10003.	3.4	20
96	Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology (United Kingdom), 1996, 142, 231-250.	1.8	73
97	Immune responses to hybrid maltose-binding proteins. Vaccine, 1993, 11, 140-142.	3.8	9
98	The Maltose B Region in Salmonella Typhimurium, Escherichia Coli and Other Enterobacteriaceae. , 1993, , 91-104.		2
99	Immunogenicity of recombinant hybrid proteins in attenuated Salmonella typhimurium. Vaccine, 1992, 10, 263.	3.8	0
100	DNA sequence analysis of the lamB gene from Klebsiella pneumoniae: implications for the topology and the pore functions in maltoporin. Molecular Genetics and Genomics, 1992, 233, 372-378.	2.4	25
101	Localization and characterization of three different beta-adrenergic receptors expressed in Escherichia coli. FEBS Journal, 1990, 187, 137-144.	0.2	42
102	High efficiency transformation of Salmonella typhimurium and Salmonella typhi by electroporation. Molecular Genetics and Genomics, 1990, 223, 156-158.	2.4	116
103	Expression of Human β1 and β2 Adrenergic Receptors in E. Coli As a New Tool for Ligand Screening. Nature Biotechnology, 1989, 7, 923-927.	17.5	41
104	Antibody response to a foreign epitope expressed at the surface of recombinant bacteria: importance of the route of immunization. Vaccine, 1989, 7, 242-248.	3.8	44
105	Antibodies against synthetic peptides and the topology of LamB, an outer-membrane protein from Escherichia coli K12. Biochemistry, 1989, 28, 8234-8241.	2.5	19
106	Versatility of a vector for expressing foreign polypeptides at the surface of Gram-negative bacteria. Gene, 1988, 70, 181-189.	2.2	118
107	Effect of point mutations on the in-vitro pore properties of maltoporin, a protein of Escherichia coli outer membrane. Journal of Molecular Biology, 1988, 201, 497-506.	4.2	24
108	Maltose transport and starch binding in phage-resistant point mutants of maltoporin. Journal of Molecular Biology, 1988, 201, 487-493.	4.2	89

#	Article	IF	CITATIONS
109	malM, a new gene of the maltose regulon in Escherichia coli K12. Journal of Molecular Biology, 1986, 191, 303-311.	4.2	35
110	Mutagenesis by random linker insertion into the lamB gene of Escherichia coli K12. Molecular Genetics and Genomics, 1986, 205, 339-348.	2.4	99
111	Further sequence analysis of the phage lambda receptor site. Journal of Molecular Biology, 1984, 175, 395-401.	4.2	64