
Jan Karlseder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1165140/publications.pdf Version: 2024-02-01

IAN KADISEDED

#	Article	IF	CITATIONS
1	Telomeres and Cancer: Resolving the Paradox. Annual Review of Cancer Biology, 2021, 5, 59-77.	2.3	30
2	A stem cell reporter based platform to identify and target drug resistant stem cells in myeloid leukemia. Nature Communications, 2020, 11, 5998.	5.8	8
3	Suppression of genomic instability by replicative senescence and crisis. Genome Instability & Disease, 2020, 1, 143-150.	0.5	1
4	Replication stress induces mitotic death through parallel pathways regulated by WAPL and telomere deprotection. Nature Communications, 2019, 10, 4224.	5.8	38
5	Autophagic cell death restricts chromosomal instability during replicative crisis. Nature, 2019, 565, 659-663.	13.7	297
6	TZAP: A telomere-associated protein involved in telomere length control. Science, 2017, 355, 638-641.	6.0	136
7	A balance between elongation and trimming regulates telomere stability in stem cells. Nature Structural and Molecular Biology, 2017, 24, 30-39.	3.6	84
8	Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature, 2017, 549, 548-552.	13.7	184
9	Cell death during crisis is mediated by mitotic telomere deprotection. Nature, 2015, 522, 492-496.	13.7	97
10	Complex interactions between the DNA-damage response and mammalian telomeres. Nature Structural and Molecular Biology, 2015, 22, 859-866.	3.6	171
11	A genomics approach identifies senescenceâ€specific gene expression regulation. Aging Cell, 2014, 13, 946-950.	3.0	42
12	Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nature Structural and Molecular Biology, 2014, 21, 167-174.	3.6	207
13	Modern genome editing meets telomeres: the many functions of TPP1. Genes and Development, 2014, 28, 1857-1858.	2.7	0
14	ALT Telomeres Borrow from Meiosis to Get Moving. Cell, 2014, 159, 11-12.	13.5	9
15	The Telomere Deprotection Response Is Functionally Distinct from the Genomic DNA Damage Response. Molecular Cell, 2013, 51, 141-155.	4.5	133
16	5′ C-rich telomeric overhangs are an outcome of rapid telomere truncation events. DNA Repair, 2013, 12, 238-245.	1.3	22
17	<i><i>C. elegans</i></i> survivors without telomerase. Worm, 2013, 2, e21073.	1.0	9
18	Organismal propagation in the absence of a functional telomerase pathway in <i>Caenorhabditis elegans</i> . EMBO Journal, 2012, 31, 2024-2033.	3.5	23

Jan Karlseder

#	Article	IF	CITATIONS
19	The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures. Nucleic Acids Research, 2012, 40, 7358-7367.	6.5	136
20	A three-state model of telomere control over human proliferative boundaries. Current Opinion in Cell Biology, 2012, 24, 731-738.	2.6	75
21	The great unravelling: chromatin as a modulator of the aging process. Trends in Biochemical Sciences, 2012, 37, 466-476.	3.7	95
22	A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nature Structural and Molecular Biology, 2012, 19, 387-394.	3.6	147
23	TRF2 regulates differential DNA damage response signaling from intermediateâ€state and uncappedâ€state telomeres. FASEB Journal, 2012, 26, 933.2.	0.2	0
24	Mammalian 5′ C-Rich Telomeric Overhangs Are a Mark of Recombination-Dependent Telomere Maintenance. Molecular Cell, 2011, 42, 224-236.	4.5	76
25	Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO Journal, 2011, 30, 480-493.	3.5	137
26	TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature, 2011, 471, 532-536.	13.7	300
27	The Adenovirus E1b55K/E4orf6 Complex Induces Degradation of the Bloom Helicase during Infection. Journal of Virology, 2011, 85, 1887-1892.	1.5	66
28	A siRNA-Based Screen for Genes Involved in Chromosome End Protection. PLoS ONE, 2011, 6, e21407.	1.1	12
29	Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nature Structural and Molecular Biology, 2010, 17, 1218-1225.	3.6	365
30	Mammalian Rap1 widens its impact. Nature Cell Biology, 2010, 12, 733-735.	4.6	21
31	Telomeres: protecting chromosomes against genome instability. Nature Reviews Molecular Cell Biology, 2010, 11, 171-181.	16.1	775
32	Impact papers on aging in 2009. Aging, 2010, 2, 111-121.	1.4	35
33	Telomeric armor: the layers of end protection. Journal of Cell Science, 2009, 122, 4013-4025.	1.2	46
34	Chromosome end protection becomes even more complex. Nature Structural and Molecular Biology, 2009, 16, 1205-1206.	3.6	8
35	Mammalian Telomeres Resemble Fragile Sites and Require TRF1 for Efficient Replication. Cell, 2009, 138, 90-103.	13.5	835
36	Moderate expression of TRF2 in the hematopoietic system increases development of large cell blastic T-cell lymphomas. Aging, 2009, 1, 122-130.	1.4	8

Jan Karlseder

#	Article	IF	CITATIONS
37	C. elegans Telomeres Contain G-Strand and C-Strand Overhangs that Are Bound by Distinct Proteins. Cell, 2008, 132, 745-757.	13.5	121
38	Cellular versus Organismal Aging. , 2008, , 3-22.		0
39	Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2205-2210.	3.3	207
40	Replication and protection of telomeres. Nature, 2007, 447, 924-931.	13.7	409
41	The DNA Damage Machinery and Homologous Recombination Pathway Act Consecutively to Protect Human Telomeres. Cell, 2006, 127, 709-720.	13.5	306
42	Telomeric proteins: clearing the way for the replication fork. Nature Structural and Molecular Biology, 2006, 13, 386-387.	3.6	8
43	In the End, its all Structure. Current Molecular Medicine, 2005, 5, 135-143.	0.6	14
44	Uncoupling of Longevity and Telomere Length in C. elegans. PLoS Genetics, 2005, 1, e30.	1.5	55
45	Functional Human Telomeres Are Recognized as DNA Damage in G2 of the Cell Cycle. Molecular Cell, 2005, 20, 551-561.	4.5	252
46	The Telomeric Protein TRF2 Binds the ATM Kinase and Can Inhibit the ATM-Dependent DNA Damage Response. PLoS Biology, 2004, 2, e240.	2.6	306
47	Defective Telomere Lagging Strand Synthesis in Cells Lacking WRN Helicase Activity. Science, 2004, 306, 1951-1953.	6.0	546
48	Telomere repeat binding factors: keeping the ends in check. Cancer Letters, 2003, 194, 189-197.	3.2	82
49	Targeted Deletion Reveals an Essential Function for the Telomere Length Regulator Trf1. Molecular and Cellular Biology, 2003, 23, 6533-6541.	1.1	150
50	Senescence Induced by Altered Telomere State, Not Telomere Loss. Science, 2002, 295, 2446-2449.	6.0	711
51	DNA Ligase IV-Dependent NHEJ of Deprotected Mammalian Telomeres in G1 and G2. Current Biology, 2002, 12, 1635-1644.	1.8	336
52	α-Melanocyte Stimulating Hormone Downregulates Differentiation-Driven Heat Shock Protein 70 Expression in Keratinocytes. Journal of Investigative Dermatology, 1997, 108, 401-405.	0.3	30
53	Carboxy-terminal Residues of Mouse Thymidine Kinase are Essential for Rapid Degradation in Quiescent Cells. Journal of Molecular Biology, 1996, 259, 383-392.	2.0	28
54	HSP70 Overexpression Mediates the Escape of a Doxorubicin-Induced G2 Cell Cycle Arrest. Biochemical and Biophysical Research Communications, 1996, 220, 153-159.	1.0	70

#	Article	IF	CITATIONS
55	Patterns of dna amplification at band q13 of chromosome 11 in human breast cancer. Genes Chromosomes and Cancer, 1994, 9, 42-48.	1.5	85