
Gyula Kovacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11651285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrophysiological Correlates of Visual Adaptation to Faces and Body Parts in Humans. Cerebral Cortex, 2006, 16, 742-753.	2.9	184
2	The Lateral Occipital Cortex in the Face Perception Network: An Effective Connectivity Study. Frontiers in Psychology, 2012, 3, 141.	2.1	88
3	Neural Correlates of Visually Induced Self-Motion Illusion in Depth. Cerebral Cortex, 2008, 18, 1779-1787.	2.9	87
4	Can predictive coding explain repetition suppression?. Cortex, 2016, 80, 113-124.	2.4	83
5	Repetition Probability Effects Depend on Prior Experiences. Journal of Neuroscience, 2014, 34, 6640-6646.	3.6	81
6	Repetition Probability Does Not Affect fMRI Repetition Suppression for Objects. Journal of Neuroscience, 2013, 33, 9805-9812.	3.6	79
7	Young without plastic surgery: Perceptual adaptation to the age of female and male faces. Vision Research, 2010, 50, 2570-2576.	1.4	72
8	Adaptation duration affects the spatial selectivity of facial aftereffects. Vision Research, 2007, 47, 3141-3149.	1.4	70
9	Direct current stimulation over MT+/V5 modulates motion aftereffect in humans. NeuroReport, 2004, 15, 2491-2494.	1.2	69
10	Adaptation effects of highly familiar faces: Immediate and long lasting. Memory and Cognition, 2007, 35, 1966-1976.	1.6	67
11	Position-specific and position-invariant face aftereffects reflect the adaptation of different cortical areas. NeuroImage, 2008, 43, 156-164.	4.2	65
12	Neuroimaging Evidence of a Bilateral Representation for Visually Presented Numbers. Journal of Neuroscience, 2016, 36, 88-97.	3.6	65
13	Neural Correlates of Generic versus Gender-specific Face Adaptation. Journal of Cognitive Neuroscience, 2010, 22, 2345-2356.	2.3	63
14	Dissociating the Effect of Noise on Sensory Processing and Overall Decision Difficulty. Journal of Neuroscience, 2011, 31, 2663-2674.	3.6	59
15	Early and late components of visual categorization: an event-related potential study. Cognitive Brain Research, 2000, 9, 117-119.	3.0	58
16	Stimulus repetition probability effects on repetition suppression are position invariant for faces. NeuroImage, 2012, 60, 2128-2135.	4.2	55
17	The relationship between stimulus repetitions and fulfilled expectations. Neuropsychologia, 2015, 67, 175-182.	1.6	49
18	Causal evidence of the involvement of the number form area in the visual detection of numbers and letters. Neurolmage, 2016, 132, 314-319.	4.2	47

GYULA KOVACS

#	Article	IF	CITATIONS
19	Position-specificity of facial adaptation. NeuroReport, 2005, 16, 1945-1949.	1.2	44
20	Cathodal stimulation of human MT+ leads to elevated fMRI signal: A tDCS-fMRI study. Restorative Neurology and Neuroscience, 2012, 30, 255-263.	0.7	44
21	Testing Promotes Long-Term Learning via Stabilizing Activation Patterns in a Large Network of Brain Areas. Cerebral Cortex, 2014, 24, 3025-3035.	2.9	42
22	Neural Correlates of High-Level Adaptation-Related Aftereffects. Journal of Neurophysiology, 2010, 103, 1410-1417.	1.8	41
23	Neural correlates of priming and adaptation in familiar face perception. Cortex, 2013, 49, 1963-1977.	2.4	39
24	Smelling human sex hormone-like compounds affects face gender judgment of men. NeuroReport, 2004, 15, 1275-1277.	1.2	37
25	Repetition probability effects for inverted faces. NeuroImage, 2014, 102, 416-423.	4.2	34
26	Electrophysiological Correlates of Voice Learning and Recognition. Journal of Neuroscience, 2014, 34, 10821-10831.	3.6	32
27	The contribution of surprise to the prediction based modulation of fMRI responses. Neuropsychologia, 2016, 84, 105-112.	1.6	31
28	Causal evidence of the involvement of the right occipital face area in face-identity acquisition. Neurolmage, 2017, 148, 212-218.	4.2	29
29	Evaluating the evidence for expectation suppression in the visual system. Neuroscience and Biobehavioral Reviews, 2021, 126, 368-381.	6.1	29
30	Neural correlates of adaptation to voice identity. British Journal of Psychology, 2011, 102, 748-764.	2.3	28
31	When does repetition suppression depend on repetition probability?. Frontiers in Human Neuroscience, 2014, 8, 685.	2.0	28
32	Does surprise enhancement or repetition suppression explain visual mismatch negativity?. European Journal of Neuroscience, 2016, 43, 1590-1600.	2.6	28
33	Getting to Know You: Emerging Neural Representations during Face Familiarization. Journal of Neuroscience, 2021, 41, 5687-5698.	3.6	27
34	Position specificity of adaptation-related face aftereffects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 586-595.	4.0	26
35	The relationship between repetition suppression and face perception. Brain Imaging and Behavior, 2017, 11, 1018-1028.	2.1	23
36	The Neural Dynamics of Familiar Face Recognition. Cerebral Cortex, 2019, 29, 4775-4784.	2.9	22

GYULA KOVACS

#	Article	IF	CITATIONS
37	The Background of Reduced Face Specificity of N170 in Congenital Prosopagnosia. PLoS ONE, 2014, 9, e101393.	2.5	21
38	The occipital face area is causally involved in the formation of identity-specific face representations. Brain Structure and Function, 2017, 222, 4271-4282.	2.3	21
39	Repetition suppression – An integrative view. Cortex, 2016, 80, 1-4.	2.4	19
40	Dissociating the neural bases of repetition-priming and adaptation in the human brain for faces. Journal of Neurophysiology, 2013, 110, 2727-2738.	1.8	18
41	Event-related potentials from a visual categorization task. Brain Research Protocols, 2001, 7, 131-136.	1.6	17
42	Face inversion reveals holistic processing of peripheral faces. Cortex, 2017, 97, 81-95.	2.4	16
43	Electrophysiological correlates of face distortion after-effects. Quarterly Journal of Experimental Psychology, 2011, 64, 533-544.	1.1	15
44	TMS of the occipital face area modulates cross-domain identity priming. Brain Structure and Function, 2019, 224, 149-157.	2.3	15
45	Electrophysiological correlates of visual adaptation and sensory competition. Neuropsychologia, 2013, 51, 1488-1496.	1.6	13
46	Sensory Competition in the Face Processing Areas of the Human Brain. PLoS ONE, 2011, 6, e24450.	2.5	13
47	Neuroimaging results suggest the role of prediction in cross-domain priming. Scientific Reports, 2018, 8, 10356.	3.3	12
48	The occipital face area is causally involved in identity-related visual-semantic associations. Brain Structure and Function, 2020, 225, 1483-1493.	2.3	12
49	Neural correlates of stimulus-invariant decisions about motion in depth. NeuroImage, 2010, 51, 329-335.	4.2	11
50	Integrating predictive frameworks and cognitive models of face perception. Psychonomic Bulletin and Review, 2018, 25, 2016-2023.	2.8	11
51	Evidence for a General Neural Signature of Face Familiarity. Cerebral Cortex, 2022, 32, 2590-2601.	2.9	11
52	Repetition Suppression for Noisy and Intact Faces in the Occipito-Temporal Cortex. Frontiers in Psychology, 2019, 10, 1348.	2.1	10
53	Adaptor Identity Modulates Adaptation Effects in Familiar Face Identification and Their Neural Correlates. PLoS ONE, 2013, 8, e70525.	2.5	9
54	Measures of repetition suppression in the fusiform face area are inflated by co-occurring effects of statistically learned visual associations. Cortex, 2020, 131, 123-136.	2.4	9

Gyula Kovacs

#	Article	IF	CITATIONS
55	Neural correlates of after-effects caused by adaptation to multiple face displays. Experimental Brain Research, 2012, 220, 261-275.	1.5	8
56	The face evoked steady-state visual potentials are sensitive to the orientation, viewpoint, expression and configuration of the stimuli. International Journal of Psychophysiology, 2014, 94, 336-350.	1.0	8
57	Adaptation Duration Dissociates Category-, Image-, and Person-Specific Processes on Face-Evoked Event-Related Potentials. Frontiers in Psychology, 2015, 6, 1945.	2.1	8
58	When noise is beneficial for sensory encoding: Noise adaptation can improve face processing. Brain and Cognition, 2017, 117, 73-83.	1.8	8
59	Visual mismatch negativity indicates automatic, task-independent detection of artistic image composition in abstract artworks. Biological Psychology, 2018, 136, 76-86.	2.2	8
60	Expectations about word stress modulate neural activity in speech-sensitive cortical areas. Neuropsychologia, 2020, 143, 107467.	1.6	8
61	Phase noise reveals early category-specific modulation of the event-related potentials. Frontiers in Psychology, 2014, 5, 367.	2.1	7
62	Significant repetition probability effects in schizophrenia. Psychiatry Research - Neuroimaging, 2019, 290, 22-29.	1.8	6
63	Face Distortion Aftereffects Evoked by Featureless First-Order Stimulus Configurations. Frontiers in Psychology, 2012, 3, 566.	2.1	5
64	Altering second-order configurations reduces the adaptation effects on early face-sensitive event-related potential components. Frontiers in Human Neuroscience, 2014, 8, 426.	2.0	5
65	Experience has a limited effect on humans' ability to predict the outcome of social interactions in children, dogs and macaques. Scientific Reports, 2020, 10, 21240.	3.3	5
66	The electrophysiological correlates of integrated face and body-part perception. Quarterly Journal of Experimental Psychology, 2017, 70, 142-153.	1,1	3
67	Visual mismatch response and fMRI signal adaptation correlate in the occipital-temporal cortex. Behavioural Brain Research, 2018, 347, 77-87.	2.2	2
68	Inhibition of the occipital face area modulates the electrophysiological signals of face familiarity: A combined cTBS-EEG study. Cortex, 2021, 141, 156-167.	2.4	2
69	The sensitivity of face specific ERP components to the nature of stimulus noise. Learning & Perception, 2009, 1, 183-197.	2.4	1
70	Repetition probability effects for Chinese characters and German words in the visual word form area. Brain Research, 2022, 1780, 147812.	2.2	1
71	Decision-dependent aftereffects for faces. Vision Research, 2014, 100, 47-55.	1.4	0
72	Similar Expectation Effects for Immediate and Delayed Stimulus Repetitions. Frontiers in Neuroscience, 2019, 13, 1379.	2.8	0

#	ARTICLE	IF	CITATIONS
73	Visual short-term memory load modulates repetition related fMRI signal adaptation. Biological Psychology, 2021, 166, 108199.	2.2	Ο
74	Person identityâ€specific adaptation effects in the ventral occipitoâ€temporal cortex. European Journal of Neuroscience, 2022, 55, 1232-1243.	2.6	0